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Abstract

We propose and analyze a committee voting model in which players with interdependent

values take a binary decision. Each player holds two-dimensional private information: a private

signal about the payoff state and a private preference type that captures their level of parti-

sanship. Each player’s payoff is a linear combination of their own signal and the average of the

others’ signals, with the relative weights determined by their preference type. We show that, in

equilibrium, committee members adopt cutoff strategies that are monotone in preference types.

We identify how a committee’s composition, captured by the distribution of private preference

types, impacts its decisions. As committee members are drawn from increasingly partisan pop-

ulations, equilibrium cutoffs move away from the sincere voting threshold. Conversely, when

committee members originate from more diverse populations, equilibrium cutoffs move closer

to the sincere voting threshold. We discuss implications for the set of alternatives that different

committees accept.

1 Introduction

In most organizations, complex decisions are made by committees, not by individuals. Corporate

boards decide how to invest, whom to hire, and whether or not to adopt a new technology. Similarly,

the allocation of research grants, the approval of new drugs by the FDA, and academic hiring are

typically committee decisions, and these decisions are reached by voting. Due to the complexity

of matters that are voted upon, committee members often cannot assess all information about

the proposal. Rather, they pay attention to the details that are most important to them, but

acknowledge that other aspects—and hence the signals (i.e., information) held by other committee
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members—also contain relevant information. In such situations, members typically put (weakly)

more weight on their own signal than on information held by others. That is, members differ in how

they aggregate available information into preferences. Even if members have the same information,

they may disagree on whether a proposal should be accepted or not. Therefore, committee members

typically have interdependent, but not purely common, preferences.1

In this paper, we propose a model that captures such settings in which members have two-

dimensional private information: First, they possess a private signal about the proposal to be voted

upon, which is payoff-relevant to all players. Second, players also have private information about

their preference type, which determines how they aggregate available information about the proposal

into preferences.

In our model, n players vote whether to accept a proposal x = (x1, . . . , xn) or to stick to the

status quo. The decision is made by generalized majority voting. The private signals xi ∈ [x`i , x
h
i ],

with x`i ≤ 0 ≤ xhi , are determined by independent draws from commonly known distributions Fi,

for all i = 1, . . . , n. Players have interdependent preferences and private preference types: Player

i evaluates proposal x at θixi + (1 − θi) 1
n−1

∑
j 6=i xj , where θi ∈ [1/n, 1] is the player’s (private)

preference type, which is drawn from a commonly known distribution Gi. All players value the

status quo at zero.

We assume that xi and θi are private information of player i. Here, xi is a private signal about

the payoff-relevant state, and the preference type θi can be interpreted as the player’s level of

partisanship, which is the extent to which they favor their own private signal over the average of

signals held by other players. One can interpret this model as a committee of partisan experts who

can each evaluate the proposal in their field of expertise and each favor their own field. An alternative

behavioral interpretation is that by assessing the proposal players obtain a private signal, and the

private preference type captures their excess confidence in their own assessment abilities relative

to the abilities of others.2 Private preference types capture the idea that the partisanship level of

an individual is intrinsic in nature, and this can be regarded as part of a player’s personality. The

distribution of private preference types represents the population from which committee members

are drawn. Note that, there is conflict of interest among committee members, and additionally

there is uncertainty about the extent of the conflict. Since players hold two-dimensional private

information, even if all private signals about the state were made public, players would still hold

private information about how they aggregate these signals into preferences; therefore, we say there

is preference uncertainty.

Our goal in this paper is to understand how private preference types, preference uncertainty, and

the composition of the committee impact equilibrium voting behavior and outcomes in committee

decisions. We focus on two novel questions that we can address with this framework: 1) How does

the level of partisanship of the population from which committee members are drawn affect voting

1This is in contrast to the traditional assumption in the voting literature that players share a common interest.
2Interestingly, Malenko et al. (2023) find that such a model with θi = 1/n is most consistent with their survey

evidence of information held by members in venture capital investment committees.
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behavior? 2) What can we say about committee decisions when the committee diversity is increased

by drawing members from a more heterogeneous population?

Our analysis is motivated by the observation that committees differ significantly in their com-

position.3 The distribution of partisanship levels of committee members naturally varies across

committees, and is influenced by factors including cultural background or organizational culture.

Members hailing from individualistic cultures often exhibit higher levels of partisanship compared

to their counterparts from collectivist, socially-oriented cultural backgrounds.4 Consequently, we

investigate voting patterns across committees when the populations from which members are drawn

(represented by the distributions of private preference types) differ by a first-order stochastic dom-

inance shift.

Another important aspect of committee composition is the diversity of the population from

which the committee’s members originate. Even when two committees have members with identi-

cal average levels of partisanship, they may still differ in terms of the heterogeneity of preference

types represented within their membership. Committees may be composed of individuals from

more or less diverse populations. When committee members originate from a group with diverse

backgrounds, it is expected that this population will exhibit a higher degree of preference het-

erogeneity. Understanding how increased preference heterogeneity in the population influences the

voting behavior of committee members is particularly relevant nowadays in light of the prevalence

of diversity initiatives. These initiatives contribute to greater preference heterogeneity within or-

ganizations, which, in turn, extends to the composition of committees within those organizations.

Similarly, committees or parliamentary bodies from smaller countries such as Luxembourg, Monaco,

or the Netherlands are less likely to demonstrate substantial preference heterogeneity in compari-

son to those in larger countries like the United States, Canada, or multinational assemblies like the

European Union or the United Nations General Assembly.

Our results provide insights into how the composition of committees, in terms of the distri-

bution and the heterogeneity of preference types of its members, affects voting behavior. We first

establish equilibrium existence and show that, in equilibrium, players adopt cutoff strategies. That

is, for every preference type θi of player i there exists a cutoff c(θi) ∈ R, such that this type votes

affirmatively if and only if they observe a signal above this cutoff, xi ≥ c(θi). As such, the cut-

offs (acceptance standards) reflect a player’s level of partisanship. Players take into account the

information about the other players’ signals that they can derive from the event of being pivotal,

which—depending on the majority rule—is either good news or bad news. Hence, players adjust

their acceptance thresholds accordingly, thus moving away from the sincere voting threshold of

zero.5 The amount of weight that players place on the information held by other players depends

3In existing voting models with interdependent values (e.g. Yildirim (2012), Moldovanu and Shi (2013), and
Name-Correa and Yildirim (2021)), all committee members have the same level of partisanship and hence the effect
of changes in the distribution of committee members cannot be studied.

4Hofstede (1991) identifies individualism vs. collectivism as one dimension along which cultural differences can be
analyzed, and Triandis (2001) links this cultural dimension to differences in personality and behavior.

5The model is normalized such that E(xi) = 0 for all i ∈ I. Hence, a sincere player—who does not take into
account the information from the event of being pivotal when casting their vote in contrast to the strategic players in
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on their level of partisanship. Strongly partisan players base their votes primarily on their own

observed signal, such that they adopt an acceptance threshold close to the sincere voting threshold

of zero. For example, if a large enough majority is required to accept the alternative (e.g. under

unanimity voting), being pivotal is good news. Hence, acceptance thresholds are non-positive where

more partisan players adopt higher acceptance standards.

For the comparative statics exercise of analyzing behavior across committees from different pop-

ulations, we consider a symmetric environment. We establish the existence of a unique symmetric

voting equilibrium, which we focus on throughout the analysis. We find that players in committees

originating from more partisan populations, captured by a first-order stochastic dominance shift

of the type distribution, adopt cutoffs that are further away from the sincere voting threshold of

zero compared to those within committees from less partisan populations. For intuition about this

result, consider a majority rule when being pivotal is good news, that is, the expected average

signal of others conditional on being pivotal is positive. Recall that more partisan players base

their vote more on their own signal. Consequently, being in a committee from a more partisan

population makes being pivotal more informative about the average signal of others (for a fixed

profile of strategies), resulting in an increase of the expected value of the average signal of others,

conditional on being pivotal. In response, players adjust (lower) their acceptance standards to a

greater extent. We will show that this counteracts, but does not completely offset, the initial effect

that results in the event of being pivotal being better news—in equilibrium players adopt lower

cutoffs when in a committee from a more partisan population.

How do players react if they find themselves in a committee composed of members from a

more diverse population? In this case there is greater preference uncertainty. One might expect

that this increased uncertainty leads to a player adopting a more lenient acceptance standard in

order to avoid proposals being rejected too frequently. However, this is not necessarily the case.

For intuition, consider again a majority rule for which being pivotal is good news. Notice that

greater heterogeneity of preference types leads to more uncertainty regarding why players vote

affirmatively: Is it because they observed a high signal? Or, did they observe an intermediate signal

but still vote affirmatively since they are a less partisan preference type? In other words, the event

of being pivotal is less informative about the other players’ signals. As we will show, in equilibrium,

this results in players basing their vote more on their own signal and adopting a cutoff closer to

the sincere voting threshold.

Related Literature. Broadly, this paper ties into the voting literature that goes back to Con-

dorcet (1785). Building on seminal works such as Austen-Smith and Banks (1996) and Feddersen

and Pesendorfer (1998), there is now extensive literature on collective decision making, which typi-

cally focuses on strategic voters who update their beliefs about the information held by other players

conditional on the event of being pivotal. Li and Suen (2009) provide an excellent survey. Most

of the traditional theoretical voting models study settings in which individuals share a common

our model—will vote affirmatively when they observe a positive signal, and they will reject the proposal otherwise.
This corresponds to an acceptance threshold of zero.
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interest such that committee members would agree on the best outcome if they knew the state.6

Specifically, this paper contributes to the relatively small literature on committee voting models

with heterogeneous preferences, in particular interdependent values. Similar models where commit-

tee members have interdependent preferences and their level of partisanship determines their bias

towards their own information are studied in Yildirim (2012), Moldovanu and Shi (2013), and Name-

Correa and Yildirim (2021).7 In these models all committee members possess the same preference

type, which determines the conflict of interest among committee members. Our model departs

from existing models in two ways. First, we assume that players have individual preference types.

Second, these individual preference types are private to the players, and thus there is preference

uncertainty. We use this model in which players hold two-dimensional private information to study

new questions such as: How do individual preference types differ in their equilibrium decisions, and

how does the composition of a committee impact voting behavior?8

The aforementioned papers and ours therefore focus on different questions. Name-Correa and

Yildirim (2021) study how majority rules and the level of conflict of interest in a committee (cap-

tured by the level of partisanship of all committee members) affect collective decisions. For different

majority rules they identify the optimal level of conflict—which they refer to as the composition

of the committee—that a biased principal would choose if they had to delegate a decision to a

committee.9 By contrast, we allow for individual and private preference types and consider how the

distribution of the population (which we refer to as committee composition) from which committee

members are drawn affects committee decisions. Moldovanu and Shi (2013) consider a dynamic

search model in which the decision to stop is made by a committee by unanimity voting. They

characterize a stationary equilibrium in cutoff strategies. In this equilibrium, acceptance standards

increase and welfare decreases in the level of conflict among committee members.10

Other interdependent values models that study collective decision making include Grüner and

Kiel (2004) and Rosar (2015). They consider a different functional form of utilities (quadratic

losses) and continuous collective decisions whereas we focus on a binary decision problem. Grüner

and Kiel (2004) show that, with an unrestricted report space and from a utilitarian perspective,

the average mechanism performs better in the common values case whereas the median mechanism

is preferable for the private values case. By contrast, Rosar (2015) finds that with an optimally

designed report space and for uniformly distributed information or large electorates, the average

mechanism performs better for any degree of interdependence.

6There is also a strand of literature that considers private value models and typically studies questions such as
costly voting and voter turnout (e.g Börgers, 2004).

7Name-Correa and Yildirim (2019) study secret voting versus public voting when experts are concerned about
being blamed. Their main model considers a private values setting but they discuss how their insights generalizes to
an interdependent values setting.

8A loosely related paper is Bardhi and Bobkova (2023) who study the selection of the composition of minipublics
by policymakers and find that moderate political uncertainty leads to inefficiently low diversity.

9Yildirim (2012) identifies time-consistent majority rules, i.e., majority rules that a designer can implement if they
cannot commit to a rule prior to observing the votes.

10Meyer and Strulovici (2015) extend some of the results of Moldovanu and Shi (2013) to more general preference
structures.
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Li et al. (2001) choose a different approach to introduce heterogeneity among voters. They relax

the assumption that players’ preferences are perfectly aligned, but they still assume that players

share a common objective. If there is uncertainty about the state there may be conflict of interest,

but disagreement vanishes if all uncertainty is resolved. The authors discuss how the (known) level

of conflict among committee members affects their incentives to strategically misrepresent their

information and thus hinder information aggregation.11

Given our focus on how the source population of committee members affects voting behavior

and outcomes, this paper may also speak and contribute to the nascent literature on how board

composition affects corporate board decisions (e.g Chemmanur and Fedaseyeu, 2018; Kim and

Starks, 2016). This literature aims to understand how increased diversity in corporate boards

affects a firm’s value. An increase in diversity may stem, for example, from increasing the ratio of

independent board members to insider directors, or from increasing the gender/cultural diversity of

board members. As Kim and Starks (2016) point out, an important yet little understood aspect is

understanding through which mechanisms increased diversity influences a firm’s value. The results

presented in this paper study one specific pathway and explain how increased diversity directly

affects the voting behavior of members in corporate boards.

The rest of this paper is structured as follows. The model is introduced in Section 2. In Section 3

we establish equilibrium existence and characterize fundamental properties of equilibrium strategies.

The comparative static results regarding the partisanship level and the heterogeneity of preference

types in the population of committee members are presented in Section 4. Section 5 discusses some

generalizations and concludes. All proofs are relegated to the appendix.

2 The Model

Consider a committee of n players, I = {1, . . . , n}, who take a binary decision of either accepting

a proposal or staying with the status quo. A proposal is characterized by an n-dimensional vector

x = (x1, . . . , xn). Values xi are determined by independent random draws from the interval Xi =[
x`i , x

h
i

]
⊂ R with x`i < 0 < xhi and commonly known (cumulative) distributions Fi. The CDFs

Fi are twice continuously differentiable with positive density fi > 0 for all xi ∈ Xi, i ∈ I. The

realization xi is private information to player i. The set of proposals, X = ×ni=1Xi and the joint

CDF of proposals, F =
∏n
i=1 Fi, are common knowledge.

Each player has an individual private preference type, θi ∈ Θi ⊆ [1/n, 1]. Preference types θi are

independently distributed on Θi = [θi, 1] with θi ≥ 1/n, commonly known CDFs Gi, and densities

gi > 0 for all θi ∈ Θi. Preference type θi is private information to player i. As such, players hold

two-dimensional private information where (θi, xi) is private information to player i.

Payoffs. A player’s preference type determines how they aggregates payoff-relevant information

into preferences. For player i with preference type θi, the payoff of proposal x = (x1, . . . , xn) is

vi((θi, xi);x−i) = θixi + (1− θi)
1

n− 1

∑
j 6=i

xj . (1)

11We discuss details of the relation and differences of their model and ours in Section 2.
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The payoff of the status quo is 0 for all members. We assume E(xi) = 0 for every i ∈ I. That is,

ex-ante, players favor neither the status quo nor the proposal.

Decision Rule. The committee decision is made by generalized majority voting. The majority

rule, which is characterized by an integer k ∈ {1, . . . , n}, is publicly announced. Players indicate

whether they want to accept or reject the proposal. The proposal is adopted if and only if there

are at least k affirmative votes. Here, k = dn+1
2 e corresponds to simple majority and k = n to

unanimity.

Discussion of the Model. The individual components x1, . . . , xn of a proposal can be inter-

preted as values of different aspects of the proposal, for example, technical specifications, marketing

potential, etc. of a new product. The model then represents a committee of experts where each ex-

pert can assess the quality of the proposal with respect to their own area of expertise. The payoff

function (1) captures that players have interdependent preferences where they place a (weakly)

higher weight on the value of the proposal in their own field. A player’s type captures the level of

interdependency, i.e. the level of partisanship of an expert. A higher θi represents a higher level

of partisanship. A player with type θi = 1 has private values and is the most partisan; the pure

common values case is captured by θi = 1/n for all i = 1, . . . , n.

Alternatively, the values xi can be interpreted as the signals that each committee member

obtains from paying attention to the evidence presented about the proposal.12 The payoff function

(1) then captures that committee members are aware that their signal is noisy and they hence take

other members’ signals into account. Preference types θi represent the level of overconfidence of

each committee member in their own signal, where higher private types reflect a higher level of

overconfidence.

To clarify, let us briefly discuss the differences in modeling preference heterogeneity in the

present model relative to that used by Li et al. (2001) and related papers (e.g. Austen-Smith and

Feddersen (2006) and Li and Suen (2009)). In the model in Li et al. (2001), players have different

preferences for type-I and type-II errors, and hence require different levels of evidence to prefer

the alternative over the status quo. This specification of heterogeneity implies that between any

pair of players there is only one direction of disagreement; if a pair of players disagrees, it is always

the same player who supports the proposal whilst the other favors staying with the status quo.

Moreover, if all uncertainty is resolved, that is, if the payoff state is known, then all players agree

on what is the best outcome.

By contrast, in the present model, even if the payoff state x = (x1, . . . , xn) was known, players

may not agree on the best outcome. Here, the conflict of interest arises from different preferences

of committee members. Moreover, the heterogeneity among players is such that the direction of

conflict depends on the realization of x. If players disagree, it is not always the same player who

favors the proposal. For any two players i and j, with different preference types θi 6= θj , there are

proposals x that player i wants to accept while player j prefers the status quo, and other proposals

12This interpretation captures the idea that when listening to information we are unable to process all of it. Hence,
when listening to the same evidence, committee members obtain different (conditionally independent) signals.
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(a) Our model with (θ1, θ2) = (3/4, 2/3).
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(b) The model in Li et al. (2001).

Figure 1: Agreement and disagreement sets in our model and in Li et al. (2001) if x = (x1, x2) is common
knowledge. Here “yn” denotes the set of x for which player 1 votes y(es) and player 2 votes n(o).

x′ that only player j wants to accept but player i prefers the status quo. The differences in modeling

conflict of interest and heterogeneity among players are illustrated in Figure 1.

Strategies. A pure13 strategy for player i is a measurable function:

σi : Θi ×Xi → {0, 1},

where σi(θi, xi) = 1 if player i votes affirmatively when their type is θi and their private signal is xi.

The strategy of a given type θi of player i is denoted by σθi : Xi → {0, 1} where σθi(xi) := σi(θi, xi).

A pure strategy for a player characterizes, for each of their preference types θi, a corresponding

acceptance set :

Aσi(θi) := σ−1
θi

(1) ⊆ Xi. (2)

This is the set of private signals xi ∈ Xi that will induce the player to vote affirmatively. A strategy

of player i thus corresponds to a collection of acceptance sets {Aσi(θi)}θi∈Θi .

A cutoff strategy of player i is a strategy σi in which, for every θi ∈ Θi, the acceptance set is

of the form Aσi(θi) = [ci(θi), x
h
i ] for some cutoff value ci(θi) ∈ [x`i , x

h
i ].14 A cutoff strategy σi of

player i thus corresponds to a cutoff function ci : Θi → Xi such that type θi votes affirmatively

if and only if they observes a signal xi ≥ ci(θi). Here, ci(θi) = xhi represents the case that type θi

rejects the proposal with probability one.15

13Restricting attention to pure strategies is without loss. It is straightforward to show that for any preference type
of any player, it is a best-response to adopt a cutoff strategy. Since we consider a continuum of types and no atoms,
the decision of an indifferent type is inconsequential since this is a zero probability event.

14To be precise, we would also have to consider acceptance sets Aσi(θi) = ∅. However, note that since {xi ∈ Xi :
xi = xhi } is a zero probability event, whenever Aσi(θi) = [xhi , x

h
i ] or Aσi(θi) = ∅, player type θi accepts the proposal

with probability zero. Hence, we identify acceptance set Aσi(θi) = ∅ with the cutoff ci(θi) = xhi . Doing so is without
loss since it does not change the expected values or payoffs of players.

15Hence, we define E[xi|xi = xhi ] := 0.
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Equilibrium Concept. We employ the concept of undominated Bayes Nash equilibrium. That

is, we restrict attention to equilibria in which no player plays a weakly dominated strategy.16 As is

standard in the voting literature, we refer to this as a voting equilibrium.17

3 Equilibrium Characterization

In a voting game, a strategic player conditions their decision on the event of being pivotal: the event

in which the player’s own vote determines the outcome. For a given majority rule k ∈ {1, . . . , n},
this is the event in which exactly k − 1 of the other players vote affirmatively.

Now, consider some majority rule k ∈ {1, . . . , n}. Recall that every strategy profile σ corresponds

to a collection of acceptance sets (2), {Aσi(θi)}θi∈Θi,i∈I . Now define:18

Ak−1
σ−i (θ−i) := {x−i : |{j ∈ I\{i} : xj ∈ Aσj (θj)}| = k − 1} ⊆ X−i. (3)

For player i, this is the set of signal profile realizations x−i for which exactly k − 1 of the other

players vote affirmatively given strategy profile σ−i and type-profile realization θ−i. Equilibrium

acceptance sets Ak−1
σ−i (θ−i) from (3) are illustrated in Figure 3(a) for player 3 in a three-member

committee, for each of the majority rules k = 1, 2, 3, for some cutoff strategies and type-profile

realization θ−3 = (θ1, θ2).

Since preference types are private information, player i does not know the type realization of

other players when casting their vote. Hence, conditional on being pivotal, player i’s expectation

of the average signal of the other players, x−i := 1
n−1

∑
j 6=i xj , given strategy profile σ−i, is:

E [x−i | pivk(σ−i)] := EΘ−i

[
EX−i

[
x−i | Ak−1

σ−i (θ−i)
]]

; (4)

and for player i with private information (θi, xi), the expected payoff from implementing the alter-

native, conditional on being pivotal, is:

Vi ((θi, xi);σ−i) = θixi + (1− θi) · E [x−i | pivk(σ−i)] . (5)

We now establish equilibrium existence.

Theorem 1 (Equilibrium Existence).

In a committee of n members, for any generalized majority rule k ∈ {1, . . . , n}, there exists a voting

equilibrium σ∗. In every voting equilibrium, players adopt cutoff strategies given by:

c∗i (θi) = max

{
x`i , min

{
−1− θi

θi
E
[
x−i | pivk(σ∗−i)

]
, xhi

}}
∀ i ∈ I, θi ∈ Θi. (6)

In equilibrium, players form beliefs about the expected average signal of other players conditional

on being pivotal. Since player’s expected payoffs conditional on being pivotal (5) are linear in their

own signals, it follows immediately that, in equilibrium, players adopt cutoff strategies.

16This eliminates trivial equilibria where all players play extreme strategies, i.e., always accept the proposal or
always reject the project.

17See e.g. Feddersen and Pesendorfer (1997) and related literature.
18Here, |S| denotes the cardinality of the set S.
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As one can easily see from (6), the most partisan (or private values) type θi = 1 adopts a cutoff

of 0. For this type, their preferences do not depend on the signals of the other players, and thus the

information derived from the event of being pivotal does not affect their decision. In other words,

such a player votes sincerely, i.e. solely based on their own private signal xi.

Every other type (with interdependent values) takes into account the information that can be

gained from the event of being pivotal about the average signal of other players. In particular, being

pivotal is either good news (if E
[
x−i | pivk(σ∗−i)

]
> 0) or bad news (if E

[
x−i | pivk(σ∗−i)

]
< 0). If

being pivotal is good (bad) news, a player will require weaker (stronger) evidence to accept an

alternative, and hence adopt a negative (positive) cutoff. The expected information derived from

the event of being pivotal is the same for all types of player i, the sign depends on the majority

rule.19 Consequently, the sign of equilibrium cutoffs does not change across preference types, such

that all types θi 6= 1 adopt a positive, or all adopt a negative, cutoff. Moreover, since moderate

types put more weight on the information held by other players, the information they derive about

other players’ signals from the event of being pivotal is reflected to a greater extent in their cutoffs

(6). In other words, their cutoffs are further from the sincere voting threshold of zero than the

cutoff of the more partisan committee members.

The following proposition summarizes these equilibrium properties.

Proposition 1. In any voting equilibrium, for all i ∈ I, the cutoff functions c∗i (·) are continu-

ous in the player’s preference type θi, and are twice continuously differentiable almost everywhere.

Moreover, either c∗i (θi) ≥ 0 for all θi ∈ Θi or c∗i (θi) ≤ 0 for all θi ∈ Θi; |c∗i (θi)| is non-increasing

in θi, and c∗i (1) = 0.

An immediate corollary of this result is that, in equilibrium, there are always some responsive

types, i.e. types whose vote depends on the realization of their private signal. Formally, we say

that type θi of player i is responsive given cutoff strategy ci(·) if they adopt an interior cutoff

ci(θi) ∈ (x`i , x
h
i ). A strategy of player i is responsive if there is a positive measure of preference

types that are responsive given cutoff strategy ci(·).

Corollary 1. In any voting equilibrium, players’ cutoff strategies are responsive. Moreover, there

exists some type θ̂i ∈ [θi, 1) such that all types θi ≥ θ̂i are responsive, and all types θi < θ̂i adopt

the same extreme cutoff, which is either x`i or xhi .

In equilibrium, for each player, there is a positive measure of responsive preference types whose

decision to vote affirmatively or not depends on their private signal. Responsiveness of players’

equilibrium strategies is a necessary condition for information aggregation. While we do not focus

on information aggregation in this paper, the corollary shows that in equilibrium some information

aggregation occurs.

19Roughly put, for more stringent majority rules (when more affirmative votes are required for approval), in
equilibrium, a player’s conditional expectation of the other players’ average signal is larger, which results in the
best-response of the player being to choose a lower cutoff.
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Figure 2: Equilibrium cutoff functions for n = 5, for different majority rules, for xi
iid∼ U [−1, 1], θi

iid∼ U [1/5, 1].

Whether all types of a player adopt cutoffs that are non-negative or non-positive depends on

the majority rule and the distribution of types and signals. As the next result shows, if equilibrium

cutoffs are non-positive (non-negative), then the corresponding cutoff function is concave (convex)

on the set of responsive types. Possible shapes of the equilibrium cutoff functions are illustrated in

Figure 2.

Proposition 2. In any voting equilibrium, every cutoff function with non-positive cutoffs c∗i (θi) ≤
0 (non-negative cutoffs c∗i (θi) ≥ 0) is concave (convex) on the set of responsive types

[
θ̂i, 1

]
.

Equilibrium cutoff functions satisfy:

(c∗i )
′ · (c∗i )′′(θi) ≤ 0 ∀ i ∈ I, θi ∈ Θi. (7)

We conclude this section by discussing an example to illustrate equilibrium properties. We will

build on this example in Section 4 and use it to illustrate our results about committee composition.

Example. Consider a two-member committee that must decide whether to accept or reject a

proposal. Say a technology and a media expert decide on whether to bring a product update to

market or to stick with the current product version. Acceptance of the proposal requires unanimity

(k = 2). Attribute values and preferences types are independently and uniformly distributed with

xi
iid∼ U [−1, 1] and θi

iid∼ U [1/2, 1] for i = 1, 2. Here, x1 could represent the quality of the product

and x2 its marketability.

Theorem 1 establishes that, in equilibrium, both experts will use cutoff strategies. Under the

unanimity rule, an expert’s vote only matters if the other expert votes affirmatively. Thus, condi-

tional on being pivotal, the expected payoff of the proposal for expert i with private information

(θi, xi) is:

Vi((θi, xi); cj) =θixi + (1− θi)EΘj

[
EXj [xj |xj ≥ cj(θj)]

]
.

11



x1

c1(θ1)

c2(θ2)

− 1
1+ln(4)

x2

A2
c(θ−3)

A1
c(θ−3)

A1
c(θ−3)

A0
c(θ−3)

(−1,−1)

(1, 1)

(a) Illustration of acceptance sets of player 3 for n = 3:
sets of signals for which exactly 0 (white), 1 (light blue),
or 2 (dark blue) of players 1 and 2 vote affirmatively for a
given cutoff strategy profile c = (c1, c2) and type realization
θ−3 = (θ1, θ2).

(−1,−1)

x1

− 1
1+ln(4)

− 1
1+ln(4)

x2

Pr(accept) = 1

(1, 1)

(b) Equilibrium acceptance probabilities for n = k = 2 and
uniformly distributed signals and types. Darker shading rep-
resents a higher acceptance probability.

Figure 3: Illustrations of acceptance sets for given type realizations and different majority rules (a), and
equilibrium acceptance sets/probabilities (b).

Solving for the equilibrium cutoff functions (6) yields:

c∗i (θi) = −1− θi
θi
· 1

1 + ln 4
for i ∈ {1, 2}.

Equilibrium cutoffs range from c∗i (1/2) = − 1
1+ln 4 ≈ −0.42 for the most moderate type to c∗i (1) = 0

for the most partisan type. Calculating the probability p(x) that, in equilibrium, an alternative

x = (x1, x2) ∈ [−1, 1]2 is accepted by the committee yields:

p(x1, x2) =

min
{

1,
∣∣∣ (1+x1+x1 ln(4))

(1−x1−x1 ln(4))

∣∣∣} ·min
{

1,
∣∣∣ (1+x2+x2 ln(4))

(1−x2−x2 ln(4))

∣∣∣} if (x1, x2) ∈
[
− 1

1+ln(4) , 1
]2
,

0 otherwise.

These acceptance probabilities are illustrated in Figure 3(b) where lighter shading represents a

lower acceptance probability. For (x1, x2) ∈ (− 1
1+ln 4 , 1]2, the acceptance probabilities are strictly

positive (equal to one in the upper right quadrant) and they are zero otherwise.

4 Comparative Static Effects of Committee Composition

We now explore how the composition of committees affects voting behavior. Specifically, we will

compare the equilibrium acceptance cutoffs of individual committee members across committees.

Here, we compare committees comprised of members from more partisan versus more moderate

backgrounds, as well as committees that vary in their levels of diversity. Additionally, we will

discuss how these factors influence the set of alternatives that committees ultimately accept.

The model introduced in Section 3 serves as the foundation for investigating these questions.

12



In our analysis, a more partisan population is characterized by a first-order stochastic dominance

shift of the distribution of private preference types. In turn, a mean-preserving spread of the dis-

tribution of private preference types introduces more heterogeneity of preference types, which can

be interpreted as a more diverse population.

4.1 Symmetric Environment, Equilibrium Uniqueness

For the sake of simplicity, we present the results in this section for a symmetric setting. In this

setting, the players’ signals about the proposal are uniformly distributed, xi
iid∼ U [−1, 1], and the

distributions over preference types are identical for all players, Gi = Gj , for all i, j ∈ I. Therefore,

we drop the subscript and denote the CDF of players’ preference types as G, the corresponding

density is g.

We focus on symmetric equilibria, in which all players adopt the same cutoff function. Therefore,

instead of the subscript of the equilibrium function indicating the player i, we incorporate the

majority rule and the preference type distribution into our notation. For all players i ∈ I, a cutoff

function is denoted by ck,G : Θi → Xi when the majority rule is k ∈ {1, . . . , n} and committee

members’ preference types are drawn from distribution G.

Focusing on this simplified setting enables us to provide a clear and concise analysis that

highlights the primary economic forces at play, while avoiding unnecessary technical complexities.

A brief discussion of how this intuition generalizes beyond uniformly distributed signals is provided

in Section 5.

As the next result shows, for each majority rule, there exists a unique equilibrium.

Proposition 3 (Symmetric Equilibrium – Uniqueness).

Consider a symmetric setting with iid preference types, θi
iid∼ G and independently and uniformly

distributed signals, xi
iid∼ U [−1, 1], for all i ∈ I. Then for any majority rule k ∈ {1, . . . , n}, there

exists a unique symmetric voting equilibrium. In equilibrium all players adopt cutoff strategies.

Notice that in a symmetric equilibrium, even though all players adopt the same cutoff function

c∗k,G(·), for a given realization of private types (θ1, . . . , θn), the realized cutoffs
(
c∗k,G(θ1), . . . , c∗k,G(θn)

)
are typically not identical.

The next result established some properties of equilibrium cutoff functions. Additionally, it

provides a closed form solution when all preference types adopt interior cutoffs.20

Corollary 2. In a symmetric equilibrium all players adopt cutoff functions that are non-positive

for k ≥ n+1
2 and non-negative otherwise:

c∗k,G(θi)

≥ 0 if k < n+1
2 ,

≤ 0 if k ≥ n+1
2 .

∀θi ∈ Θi, i ∈ I.

20That is, whenever c∗k,G(θi) ∈ (0, 1) ∀θi ∈ Θi.
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Moreover, when all cutoffs are interior, then cutoffs are given by

c∗k,G(θi) = − 2k − n− 1

(n− 1)(2 + IΘ)
· 1− θi

θi
, with IΘ =

∫
Θj

1− θj
θj

dG(θj). (8)

Recall, that depending on the majority rule, being pivotal is either good news (when

E
[
x̄−i|pivk(σ∗−i)

]
≥ 0) or bad news (when E

[
x̄−i|pivk(σ∗−i)

]
≤ 0). In the current setting, if ac-

cepting the proposal requires at least a simple majority, that is if k ≥ n+1
2 , then being pivotal is

good news. Consequently, a player will require weaker evidence to accept an alternative, and hence

adopts a negative cutoff. Voting rules that require at least a simple majority are the most prevalent

majority rules adopted in practice. Therefore, in what follows, when interpreting and providing

intuition for the results, we will focus on this case with k ≥ n+1
2 .

4.2 Extent of Partisanship in the Population

We now turn to the analysis of how acceptance standards depend on a committee’s population

(the distribution of preference types). We begin by investigating voting behavior across committees

whose members originate from populations with more or less partisan (extreme) preference types.

Formally, when comparing two populations G and H from which committee members’ preference

types are drawn, we say that H is a more partisan population if the distribution H first-order

stochastically dominates21 G, denoted by H %1 G. That is, distribution H puts more mass on

higher (i.e. more partisan) types than G.

Our first result shows that equilibrium cutoffs move away from the sincere voting threshold of

zero, if players find themselves among fellow committee members from a more partisan population.

This is true for each preference type θi.

Proposition 4 (More Partisan Populations).

For any given majority rule k = {1, . . . , n}, when comparing symmetric voting equilibria across

committees, each preference type adopts a cutoff further away from the sincere voting threshold of

zero when being in a committee with members from a more partisan population than when in a

committee with more moderate members:

If H %1 G, then

c∗k,H(θi) ≤ c∗k,G(θi) if k ≥ n+1
2

c∗k,H(θi) ≥ c∗k,G(θi) if k ≤ n+1
2

∀ θi ∈ Θi, ∀ i ∈ I.

The result shows that, for majority rules with k ≥ n+1
2 , every preference type adopts a less

stringent acceptance standard (cutoff) when they are part of a committee composed of members

from a more partisan population, as opposed to a committee with more moderate members. In

particular, one can interpret this result as players acting more leniently when they expect their

fellow committee members to be opinionated (i.e. drawn from a more partisan population) than

if they were in a committee with members originating from a more moderate population. For

instance, consider a partisan member (with a preference type θi close to one) who, in a committee

21Formally, a distribution H first-order stochastically dominates G, if H(θi) ≤ G(θi) for all θi ∈ Θi.
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formed from a moderate population, sets a high acceptance standard for proposals within their

area of expertise. Consequently, only proposals excelling in this expert’s domain may gain approval.

Conversely, placing the same expert in a committee formed from a more partisan population would

result in them acting more leniently, allowing a broader range of proposals to pass. In other words,

partisan committee members act more leniently among their peers.

To gain intuition for the result, consider a first-order shift in the distribution of preference

types of the committee members. From Proposition 1, we know that individuals with more partisan

preferences adopt cutoffs closer to the sincere voting threshold of zero than their more moderate

committee members. These more partisan individuals largely rely on their own signal when casting

their votes. Consequently, if the cutoff strategies remain unchanged, for an individual facing fellow

committee members from a more partisan population, being pivotal is more informative about other

members’ signals than if their peers were from a more moderate population. Under a voting rule

with k ≥ n+1
2 , being pivotal is good news about the average signal of other players. When the cutoff

function remains fixed, this conditional expected value increases when moving to a more partisan

population. Consequently, each preference type would best-respond by lowering their acceptance

standard, counteracting the initial effect. As Proposition 4 shows, in equilibrium, the lower cutoffs

do not completely offset that being pivotal is better news when facing a more partisan population.

Therefore, equilibrium cutoff functions shift downwards.

4.3 Level of Preference Heterogeneity of the Populations

Another important aspect in how populations differ is their preference heterogeneity or diversity. A

natural question arises: how does the diversity of the population from which committee members are

selected impact voting behavior and outcomes? This question gains importance in today’s context

of increased global mobility, the prevalence of diversity initiatives, and the resulting rise in diversity

within organizations, including their committees.

We model this scenario by comparing equilibrium behavior across two committees drawn from

populations with the same expected level of partisanship but differing in preference heterogeneity.

Formally, when comparing two committees whose members’ preference types are drawn from distri-

butions H and G, we say that population H is more heterogeneous than G, if H is a mean-preserving

spread22 of G, denoted by H %MPS G. As the following result shows, players who find themselves

in a committee with members from a more heterogeneous population, adopt cutoffs closer to the

sincere voting threshold than when in a committee from a more homogeneous population.

Proposition 5 (More Heterogeneous Populations).

For any given majority rule k = {1, . . . , n}, when comparing symmetric voting equilibria across

committees, each preference type adopts a cutoff closer to the sincere voting threshold of zero when

being in a committee with members from a more heterogeneous population than when in a committee

22Formally, a distribution H is a mean-preserving spread of G, if
∫ x
θi
H(θi) dθi ≥

∫ x
θi
G(θi) dθi for all x ∈ Θi with

equality for x = θi.

15



with more homogeneous members:

If H %MPS G, then

c∗k,H(θi) ≥ c∗k,G(θi) if k ≥ n+1
2

c∗k,H(θi) ≤ c∗k,G(θi) if k ≤ n+1
2

∀ θi ∈ Θi, ∀ i ∈ I.

Let us provide some intuition for the result. The more heterogeneous the population from which

committee members are drawn, the more uncertainty there is for each player about other members’

preferences. In other words, the event of being pivotal is less informative for a player; that is, it

is harder for a player to infer whether fellow committee members vote affirmatively because of a

high signal or because they have a low preference type resulting in a low acceptance standard.23

In the latter case, a player may vote affirmatively even though they observe a relatively low signal

(cf. Proposition 1). Consequently, a player in a diverse committee bases their vote more on their

own private signal than a player who finds themself in a committee with members from a less

heterogeneous population. For majority rules with k ≥ n+1
2 , this implies that players adopt higher

acceptance standards when in a committee composed from a more diverse population than if they

are part of a more homogeneous committee.

One implication of this result is, that for majority and super-majority rules, more diverse com-

mittees will impose higher minimal acceptance standards in each dimension. The set of proposals

that are accepted in equilibrium with positive probability is reduced to include only less risky al-

ternatives. In other words, such committees engage in less risk-taking, which is in line with findings

in Chen et al. (2019).

Example: (continued) We revisit our example of a two-member committee and unanimity

voting (n = k = 2) with uniformly distributed signals xi
iid∼ U [−1, 1]. We compare our initial

committee in which the members are drawn from a population with uniformly distributed preference

types θi
iid∼ U [1/2, 1] for i = T,M to a committee whose members stem from a more partisan

population θi
iid∼ H on [1/2, 1] with increasing density h(θi) = 5

8(θi− 1
2). By construction H first-order

stochastically dominates the uniform distribution U [1/2, 1]. Solving for a symmetric equilibrium, we

obtain the equilibrium cutoff function c∗H(θi) = −1−θi
θi
· 1

5−2 ln(4) . As illustrated in Figure 4(a), for

any type θi < 1 this cutoff is lower than cutoff c∗U (θi) = −1−θi)
θi
· 1

1+ln 4 which would be adopted in

a committee with uniformly distributed preference types—a less partisan population.

Similarly, we can compare the behavior across committees whose members stem from popula-

tions with either more or less preference heterogeneity. Here, we compare our initial example with

θi
iid∼ U [1/2, 1] to a committee with θi

iid∼ H on [1/2, 1] with density24 h(θi) =
2Γ( 2

5)

(−4θ2
i+6θi−2)

4/5
Γ( 1

5)
2 .

Here, by construction, H is a mean-preserving spread of the uniform distribution on [1/2, 1]. That

is, we compare the committee from our initial example in Section 3 to a committee whose members

are drawn from a more diverse population H. Solving for a symmetric equilibrium, we obtain cutoff

function c∗H(θi) ≈ −0.41 · 1−θi
θi

, which is illustrated in Figure 4(b). As can be seen, every preference

23Recall, that here we focus on the case with k ≥ n+1
2

.
24This distribution is constructed from the Beta(1/5, 1/5) distribution, in particular, θi = (X + 1)/2 with

X ∼ Beta(1/5, 1/5).
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(a) Increased partisanship: H %1 U .
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(b) Increased diversity: H %MPS U .

Figure 4: Effect of increase in partisanship (a) and diversity (b) on equilibrium cutoff functions. Here, U is
the uniform distribution on [1/2, 1].

type adopts a higher cutoff when they are part of a more diverse committee compared to when

they are part of a committee constituted of members from a more homogeneous population.

5 Discussion and Concluding Remarks

We have proposed a model of committee voting in which each player obtains a private payoff-

relevant signal about the proposal that is up for vote. The model features two novelties: 1) How

a player aggregates this information into preferences depends on their individual preference type,

and 2) this preference type is private information to the player.

First, we establish equilibrium existence and show that, in equilibrium, players adopt cutoff

strategies where a player’s preference type is reflected in their individual acceptance standard

(cutoff). Equilibrium strategies are monotone in a player’s preference type. Partisan players base

their vote largely on their own private signal, whereas more moderate types place more weight on

the information that they derive from being pivotal such that their acceptance standard moves

away from the sincere voting threshold of zero.

Next, we identified how acceptance standards react to changes in the distribution of preference

types of committee members. For majority rules that require at least a simple majority, k ≥ n+1
2 ,

we find that: 1) Players adopt lower acceptance standards when in a committee with members

from a more partisan population, and 2) greater preference type heterogeneity, and hence greater

uncertainty about other committee members’ preference types, leads players to act more cautiously

and utilize their own privately observed signal to a greater extent when making a decision. In other

words, they adopt more stringent acceptance standards; cutoffs are closer to zero—the sincere

voting threshold.

More general utility functions: The specific parametric form of (1) is not crucial for the

results. The equilibrium characterization results of Section 3 extend to utility functions that are

additively separable in x, continuously increasing in xi for all i ∈ I and that satisfy the following

17



single-crossing property:

Assumption 1 (SC): For all i, j ∈ I, j 6= i:

∂vi
∂xi

((θi, xi);x−i) ≥
∂vj
∂xi

((θj , xj);x−j) ∀x ∈ X , (θi, θj) ∈ Θi ×Θj .

For the parametric form of (1), this is equivalent to θi ≥ 1
n−1(1− θj) for all (θi, θj) ∈ Θi ×Θj ,

j 6= i, which implies Θi ⊆ [1/n, 1] for every i ∈ I.

Generalization of the comparative statics results: Before concluding, it is worth providing

a brief discussion of how the intuition from the results in Section 4 generalizes beyond the case of

uniformly iid signals. Let me summarize the driving forces behind the comparative statics results

to illustrates how the results should generalize.

For any generalized majority rule, the number of affirmative votes required to adopt the al-

ternative determines whether cutoff functions are non-positive or non-negative in the symmetric

equilibrium. If a large majority k is required to approve the proposal, then being pivotal is good

news about the expected average signal of other players. Consequently, players react by adopting

an acceptance standard that is lower than the sincere voting threshold of zero. By contrast, if the

number of affirmative votes necessary to adopt the alternative is small, then being pivotal is bad

news about the average expected signal of other players, and committee members react by adopting

positive cutoffs.

As discussed, if we consider a first-order shift in the preference type distribution of the popula-

tion of committee members, we move to a committee constituted of members from a more partisan

population. Recall that partisan players adopt acceptance standards closer to the sincere voting

threshold. Thus, keeping cutoff strategies fixed, if being pivotal is good (bad) news about the aver-

age expected signal of other players, then being pivotal is better (worse) news when facing a more

partisan population. Hence, each individual preference type will adjust their acceptance standard

to a greater extent. This will counteract but not completely offset the initial effect. Consequently,

equilibrium cutoffs move away from the sincere voting threshold of zero such that the equilibrium

cutoff function moves upwards if it is non-negative and downwards if it is non-positive.

For the case of committee members originating from a population with more heterogeneous

preference types (captured by a mean-preserving spread of the distribution of preference types),

the event of being pivotal becomes less informative about the other players’ preferences, when

keeping cutoff strategies fixed. As a result, each player best-responds by basing their vote more on

their own private signal. Again, this does counteract but not completely offset the initial effect. For

each individual preference type, equilibrium cutoffs move closer to zero such that the equilibrium

cutoff function shifts upwards if it is non-positive and downwards if it is non-negative.

This general intuition does not rely on the assumption that signals are uniformly iid. The

current analysis in Section 4 with uniform iid signals already captures the main economic forces

and insights, whereas the generalization would be more technically involved and hence come at the

cost of neatness and simplicity without providing additional economic insights.
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Finally, the results of this work may provide insights into how decisions may be influenced by

the member composition of a committee or by how well committee members know each other.25

For example, a CEO who seeks approval for a new product version, but is less concerned about the

approval standard in each dimension, may prefer a less diverse and overall more moderate committee

composition. This results in members adopting lower acceptance standards, which yields a higher

probability of approval.

Our result in Subsection 4.3 suggests that for decisions that require majority or super-majority,

individual members will raise their acceptance standards when diversity in a committee increases.

Hence, such a committee only accepts alternatives that are of sufficiently high quality in each

dimension. This is in line with the finding that having women on a board results in less aggressive

risk-taking (e.g. Chen et al., 2019). When diversity in a committee increases, committee members

adopt higher acceptance standards and the required quality to pass in each dimension increases.

The set of proposals that are accepted in equilibrium with positive probability is reduced to include

only less risky alternatives.

25This will implicitly determine the heterogeneity of the population, i.e. the uncertainty of players about other
members’ preference types.
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Appendix

Proof of Theorem 1. Consider player i ∈ I. Given majority rule k ∈ {1, . . . , n}, suppose all other

players follow strategy profile σ−i. A best-response of type θi of player i is to vote for the alternative

if and only if the expected payoff of the alternative conditional on them being pivotal (5), is greater

than the payoff of the status quo. Consequently, type θi’s best response is to vote affirmatively if

and only if Vi ((θi, xi);σ−i) ≥ 0.

It is easy to see from (5) that Vi ((θi, xi);σ−i) is continuous and strictly increasing in xi. Con-

sequently, player i’s best response is to follow a cutoff strategy corresponding to the cutoff function

cBRi given by:26

cBRi (θi) =


x`i if Vi ((θi, xi);σ−i) ≥ 0 ∀xi ∈

[
x`i , x

h
i

]
xhi if Vi ((θi, xi);σ−i) < 0 ∀xi ∈

[
x`i , x

h
i

)
−1−θi

θi
E [x−i | pivk(σ−i)] otherwise,

(9)

where type θi votes affirmatively if and only if he observes a signal xi ≥ cBRi (θi).

For each i ∈ I, let RΘi be the space of functions f : Θi → R endowed with the product topology

(i.e. the topology of pointwise convergence) and let XΘi
i ⊆ RΘi be the subset of functions with range

Xi. With this topology, RΘi is locally convex.27 We represent cutoff strategies by their corresponding

cutoff functions and denote player i’s best response function by φBRi : X1
Θ1 × · · · × XnΘn → XiΘi ,

where φBRi identifies, for every cutoff function profile (ci, c−i), a corresponding cutoff-function

φBRi (ci, c−i) ∈ XiΘi that is a best-response of player i. Notice that φBRi is constant in ci.

The best response correspondence can be characterized as:

Φ : X1
Θ1 × · · · × XnΘn −→ X1

Θ1 × · · · × XnΘn

c = (c1, . . . , cn) 7−→
(
φBRi (c) , . . . , φBRn (c)

)
.

By Tychonoff’s theorem, since Θi and Xi are compact, so is XΘi
i for all i ∈ I, and hence XΘ1

1 ×
· · · × XΘn

n is compact. It is easily verified that XΘ1
1 × · · · × XΘn

n is non-empty and convex.

The best response function Φ is continuous since each of its coordinate functions is continuous.

Indeed, for every i ∈ I, ΦBR
i is constant in ci. Moreover, ΦBR

i is continuous in c−i since the

expectation operator is linear and bounded in the given setting (cf. (9)). The Brouwer-Schauder-

Tychonoff fixed-point theorem28 thus establishes existence of a fixed point and hence equilibrium

existence, which completes the proof.

26As discussed in Section 2, each cutoff strategy σi of player i corresponds to a cutoff function ci : Θi → Xi where
ci(θi) is the cutoff that player i adopts if his type is θi. Moreover, each such cutoff function corresponds to a cutoff
strategy where type θi accepts iff xi ≥ c(θi).

27See e.g. Aliprantis and Border (2006), Lemma 5.74.
28cf. Aliprantis and Border (2006), Corollary 17.56
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Proof of Proposition 1. Consider any (equilibrium29) strategy profile σ∗. Continuity follows im-

mediately from (6) since E
[
x−i | pivk(σ∗−i)

]
is constant in θi for any i ∈ I, −1−θi

θi
is continuous

in θi on [1/n, 1], and the min/max of two continuous functions is continuous. Additionally, since

E
[
x−i | pivk(σ∗−i)

]
is constant and −1−θi

θi
is twice continuously differentiable in θi, it follows that

c∗i (θi) is twice continuously differentiable in θi whenever the cutoffs are interior, c∗i (θi) ∈
(
x`i , x

h
i

)
.

Now, if c∗i (θ̂i) ∈ {x`i , xhi } for some θ̂i ∈ Θi, then it is easy to see from (6) that all types θi ≤ θ̂i

adopt the same extremal cutoff. Thus, if any types of player i adopt extremal cutoffs in {x`i , xhi }
in equilibrium, then the set of types that do so is a closed interval [θi, θ̂i]. The equilibrium cutoff

function is constant on this set and is thus twice continuously differentiable on
(
θi, θ̂i

)
. However,

c∗(θi) is not differentiable at θ̂i, and hence equilibrium cutoff functions are only differentiable almost

everywhere.

Moreover, since E
[
x−i | pivk(σ∗−i)

]
is constant in θi, and −1−θi

θi
< 0 for all θi ∈ [1/n, 1), it follows

directly that equilibrium cutoffs c∗i (θi) given by (6) have the same sign for all types θi ∈ Θi\{1}:

sign c∗i (θi) = −signE
[
x−i | pivk(σ∗−i)

]
.

Next, notice that since E
[
x−i | pivk(σ∗−i)

]
is constant in θi for any strategy profile σ−i, we

obtain:

d |c∗i |
dθi

(θi) = − 1

θ2
i

·
∣∣E [x−i | pivk(σ∗−i)]∣∣ ≤ 0,

for all θi with c∗i (θ) ∈
(
x`i , x

h
i

)
. It follows that |c∗i (θi)| is non-increasing in θi whenever cutoffs

are interior. Moreover, as shown above, |c∗i (θi)| is constant on the (possibly empty) set of types

[θi, θ̂i] that adopt extremal cutoffs. Since c∗i (·) is continuous, this completes the proof that |c∗i (θi)|
is non-increasing in θi.

Finally, a player with preference type θi = 1 has private values, and hence Vi
(
(1, xi);σ

∗
−i
)

= xi,

∀xi ∈ Xi. Thus, from (9) it follows directly that c∗i (1) = 0. That is, in equilibrium, preference type

θi = 1 always votes sincerely.

Proof of Corollary 1. The result follows directly from Proposition 1, specifically c∗i (1) = 0 and

continuity of c∗i (·).

Proof of Proposition 2. By Proposition 1, c∗i (·) is twice continuously differentiable on
(
θ̂i, 1

)
and

from (6) we obtain:

(c∗i )
′ · (c∗i )

′′ (θi) = − 2

θ5
i

E
[
x−i | pivk(σ∗−i)

]2 ≤ 0 ∀
(
θ̂i, 1

)
.

The result about concavity/convexity of equilibrium cutoff functions follows by combining this with

the result of Proposition 1.

Proof of Proposition 3 and Corollary 2. For a given distribution of preference types, G, consider

29Many of the statements in this proof hold more generally for any given strategy profile σ.
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any majority rule k ∈ {1, . . . , n}. Define the function

Γk,G : XΘi
i → R (10)

ck,G 7→ E [x̄−i|pivk(ck,G)]

that maps a cutoff function ck,G : Θi → Xi to the expected value of the average signal of other play-

ers conditional on being pivotal (4), when all other players adopt a cutoff strategy that corresponds

to the cutoff function ck,G.

Notice that for a symmetric cutoff strategy profile with corresponding cutoff function c, the

expected average signal of other players conditional on being pivotal is the same for all committee

members. That is, every cutoff strategy induces a unique Γk,G(c) = E [x̄−i|pivk(c)] ∈ Xi. For

uniformly distributed signals xi
iid∼ U [−1, 1], for a given cutoff strategy c : Θi → Xi, we obtain (for

notational simplicity we consider agent i = n which is without loss in our symmetric setting):

Γk,G(c) = E [x̄−i|pivk(c)] = E [x̄−n|pivk(c)]

= EΘ−n

[
EX−n

[
x̄−n|x ∈ Ak−1

c (θ−n)
]]

= EΘ−n

 1

2(n− 1)

∑
j 6=n

c(θj) + 2k − n− 1

 .
Now, define the function:

Λ : Xi → XΘi
i (11)

γ 7→ cγ : Θi → Xi

with cγ(θi) := max

{
x`i ,min

{
−1− θi

θi
· γ, xhi

}}
,

that maps an expected value of the average signal conditional on being pivotal, γ, to a cutoff

function that represents a best-response of a player to γ (cf. (6)).

Now, consider the composite function:

Ψk,G : Xi
Λ−→ XΘi

i

Γk,G−→ Xi
γ 7−→ cγ 7−→ E [x̄−i|pivk(cγ)] .

For uniformly distributed signals xi
iid∼ U [−1, 1], for any γ ∈ [−1, 1], we obtain:

Ψk,G(γ) = Γk,G(Λ(γ)) =EΘ−n

 1

2(n− 1)

∑
j 6=n

cγ(θj) + 2k − n− 1


=

2k − n− 1

2(n− 1)
+

1

2(n− 1)
· EΘ−n

∑
j 6=n

max

{
−1, min{−1− θj

θj
· γ, 1}

}
=

2k − n− 1

2(n− 1)
+

1

2
· EΘj

[
max

{
−1, min{−1− θj

θj
· γ, 1}

}]
.

Notice that for a given γ ∈ [−1, 1], cγ(θj) = max
{
−1, min{−1−θj

θj
· γ, 1}

}
has the same sign for
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all θj ∈ Θj . Moreover,

EΘj

[
max

{
−1, min{−1− θj

θj
· γ, 1}

}]
=

∈ [−1, 0] if γ ≥ 0,

∈ [0, 1] if γ ≤ 0,

with EΘj

[
max

{
−1, min{−1−θj

θj
· γ, 1}

}]
= 0 iff γ = 0 since G is non-degenerate.

To prove equilibrium uniqueness, we now show that, for a given majority rule k ∈ {1, . . . , n},
the function Ψk,G(·) has a unique fixed point γ∗k,G. Notice that here we use that focusing on a

symmetric model and equilibrium makes the problem of finding an equilibrium one-dimensional (in

contrast to the existence proof of Theorem 1).

First, it is easy to see that Λ and Γk,G are each continuous, and hence Ψk,G is continuous in γ.30

Consequently, Ψk,G is a continuous function between compact convex spaces and hence Brouwer’s

fixed point theorem establishes the existence of a (not necessarily unique) fixed point. In the one-

dimensional case that we consider, these fixed points correspond to intersection points of the graph

of Ψk,G with the 45°-line (i.e. the graph of the function f(γ) = γ).

Observe that 2k−n−1
2(n−1) ≥ 0 for k ≥ n+1

2 . Therefore, any fixed point of Ψk,G(·). must be non-

negative, γ∗k,G ≥ 0. Indeed, suppose by contradiction that there were a fixed point of Ψk,G(·)
with γ < 0. Then this would imply EΘj

[
max

{
−1, min{−1−θj

θj
· γ, 1}

}]
> 0 and consequently

Ψk,G(γ) > 0 which shows that γ < 0 cannot be a fixed point. A similar argument shows that when

k ≤ n+1
2 , then any fixed point of Ψk,G(·) is non-positive, γ∗k,G ≤ 0. This also implies γ∗(n + 1)/2 = 0

for n odd which completes the proof of Corollary 2.

To obtain equilibrium uniqueness, we show that Ψk,G : Xi → Xi is weakly decreasing and hence

crosses the 45°-line only once. Indeed, if we restrict attention to k ≥ (n+1)
2 , we know that c(θi) ≤ 0

for all θi ∈ Θi or equivalently γ ≥ 0. We obtain

Ψk,G(γ) =
2k − n− 1

2(n− 1)
+

1

2

∫
Θj

max

{
−1, −1− θj

θj
· γ
}

dGj(θj), (12)

Observe that for γ ∈ [0, 1], −1−θj
θj
· γ is decreasing in γ and hence max

{
−1, −1−θj

θj
· γ
}

is weakly

decreasing in γ for every θj ∈ Θj . From this it follows directly that∫
Θj

max

{
−1, −1− θj

θj
· γ
}

dGj(θj)

and hence Ψk,G(γ) is (weakly) decreasing in γ ∈ [0, 1]. Since a fixed point of Ψk,G(γ) is an intersec-

tion point of Ψk,G(γ) with the 45◦-line, it follows that Ψk,G(γ) has a unique fixed point γ∗k,G. The

proof of such a unique fixed point for the case k < n+1
2 follows from analogous arguments.

Now, notice that any fixed point γ∗ of Ψk,G(·) uniquely determines a cutoff function cγ∗(·) =

Λ(γ∗) that is a fixed point of Λ ◦ Γk,G and hence corresponds to a symmetric equilibrium in cutoff

strategies. Moreover, it is straightforward to verify that for any fixed point c∗ of the mapping Λ◦Γk,G,

30Recall that XΘi
i is the space of functions endowed with the product topology, i.e. the topology of pointwise

convergence.
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Γk,G(c∗) is a fixed point of Ψk,G. In other words, there is a one-to-one relation between fixed points

of Ψk,G and fixed points of Λ ◦ Γk,G, where the latter are cutoff functions that characterize a

symmetric equilibrium in cutoff strategies.

Finally, for the case of interior cutoffs, that is when ck,G(θi) ∈ (−1, 1) for all θi ∈ Θi, observe

that we obtain:

Ψk,G(γ) =
2k − n− 1

2(n− 1)
− γ

2(n− 1)
· (n− 1)

∫
Θj

1− θj
θj

dGj(θj).

This implies that for interior cutoffs γ∗k,G is a fixed point of Ψk,G(·) if

γ∗k,G =
2k − n− 1

2(n− 1)
− 1

2
· γ∗k,G · IΘ.

where

IΘ :=

∫
Θj

1− θj
θj

dG(θj).

From this it follows that

γ∗k,G :=
2k − n− 1

(n− 1)(2 + IΘ)
,

which in turn yields

c∗k,G(θi) = − 2k − n− 1

(n− 1)(2 + IΘ)
· 1− θi

θi
, with IΘ =

∫
Θj

1− θj
θj

dG(θj).

Proof of Proposition 4. Let H %1 G be two preference type distributions and let γ∗k,G, γ
∗
k,H be the

corresponding expected values of the average signals of other players conditional on being pivotal—

in other words the corresponding fixed points of Ψk,G(·), Ψk,H(·) for the respective distributions.

A defining property of first-order stochastic dominance is that if H first-order stochastically

dominates G, then for any non-decreasing function u : R→ R, it holds that

EΘ∼H [u(θ)] ≥ EΘ∼G[u(θ)].

Consider the case k ≥ n+1
2 in which γ∗k,G, γ

∗
k,H ≥ 0 and cutoffs are non-positive. Now, as above,

for every γ ≥ 0, let cγ(θj) = max
{
−1, −1−θj

θj
· γ
}
, for θj ∈ Θj , which is weakly increasing in θj

(cf. Proposition 1). This implies

EΘj∼H [cγ(θj)] ≥ EΘj∼G[cγ(θj)].

Recall that, Ψk,G(γ) = 2k−n−1
2(n−1) + 1

2EΘj∼G[cγ(θj)]. We thus obtain that ifH %1 G, then Ψk,H(γ) ≥
Ψk,G(γ) ∀γ ∈ [0, 1]. By Proposition 3, we know that each Ψk,G(·) has a unique fixed point (which

is the intersection of Ψk,G(·) with the 45◦-line), from which it follows that γ∗k,H ≥ γ∗k,G. This implies

c∗k,H(θi) = max{−1, −1− θi
θi
· γ∗k,H} ≤ max{−1, −1− θi

θi
· γ∗k,G} = c∗k,G(θi) ∀θi ∈ Θi.
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Analogous arguments for the case k ≤ n+1
2 , in which cutoffs are non-negative, shows that if H %1 G

then c∗k,H(θi) ≥ c∗k,G(θi), for all θi ∈ Θi, which completes the proof.

Proof of Proposition 5. SupposeH %MPS G are two preference type distributions and let γ∗k,G, γ
∗
k,H

be the corresponding fixed points of Ψk,G(·), Ψk,H(·) for the respective distributions.

A defining property of H being a mean-preserving spread of G is that both distributions have

equal means and for any non-decreasing and (not necessarily strictly) concave function u : R→ R,

it holds that31

EΘ∼H [u(θ)] ≤ EΘ∼G[u(θ)]. (13)

Consider the case k ≥ n+1
2 in which γ∗k,G, γ

∗
k,H ≥ 0 and cutoffs are non-positive. As before, for

every γ ≥ 0, let cγ(θj) = max
{
−1, −1−θj

θj
· γ
}
, for θj ∈ Θj . Then for H %MPS G, we obtain:

EΘj∼H [cγ(θj)] =

∫
Θj

max{−1,
1− θj
θj

· γ} dH(θj) =

∫ γ
1+γ

θj

−1 dH(θj) +

∫ 1

γ
1+γ

−1− θj
θj

· γ dH(θj)

≤
∫ γ

1+γ

θj

−1 dG(θj) +

∫ 1

γ
1+γ

−1− θj
θj

· γ dG(θj)

=

∫
Θj

max{−1,
1− θj
θj

· γ}dG(θj) = EΘj∼G[cγ(θj)],

where the inequality follows from (13), since for γ ≥ 0, −1−θj
θj
· γ is non-decreasing and concave in

θi, and −1 is constant (and as such non-decreasing and concave as well).

With this, we obtain that for any k ≥ n+1
2 , if H %MPS G, then

Ψk,H(γ) ≤ Ψk,G(γ) ∀γ ∈ [0, 1],

where again, recall that Ψk,G(γ) = 2k−n−1
2(n−1) + 1

2EΘj∼G[cγ(θj)]. Since for every given distribution of

private preference types, there exists a unique symmetric equilibrium, in other words, a unique

fixed-point of Ψk,G : [0, 1]→ [0, 1], it follows that

γ∗k,H ≤ γ∗k,G

and hence

c∗k,H(θi) = max{−1, −1− θi
θi
· γ∗k,H} ≥ max{−1,−1− θi

θi
· γ∗k,G} = c∗k,G(θi)

for all θi ∈ Θi.

Analogous arguments for the case k ≤ n+1
2 , in which cutoffs are non-negative, show that if

H %MPS G then c∗k,H(θi) ≤ c∗k,G(θi), for all θi ∈ Θi, which completes the proof.

31This is based on H %MPS G iff they have equal means and G second-order stochastically dominates H of which
(13) is a defining property.
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