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Abstract

In mechanism design problems with endogenous information, regularity properties

of the distribution of posterior estimates (types) are essential for tractability. Important

properties are a monotone hazard rate, increasing virtual valuations or costs. Difficul-

ties arise since these properties are not preserved under mixtures, and regularity of

the prior distribution may not translate to the distribution of posterior types. In this

note, we identify sufficient conditions on the primitives of an information structure,

which guarantee that the distribution of posterior types has a monotone hazard rate,

increasing virtual valuations or costs. These characterization results make it possible to

study mechanism design problems with endogenous information, without imposing reg-

ularity conditions on the interim stage or restricting attention to specific information

structures. Applications to information acquisition and disclosure in optimal auctions,

and to allocation problems without money are discussed.

Keywords: Information structures · Monotone hazard rate · Regularity · Distribution

of posterior estimates · Mechanism design

JEL Classifications: C46, C60, D82

∗I am grateful to Benny Moldovanu, Dirk Bergemann, and Larry Samuelson for their valuable comments
and suggestions. I also thank Johannes Hörner, Daniel Krähmer, Jose Penalva and Bruno Strulovici for helpful
comments and insightful discussions. Financial support from the DFG through Bonn Graduate School of
Economics and from the German Academic Exchange Service (DAAD-Doktorandenstipendium) is gratefully
acknowledged.
†Department of Economics, University of Bonn, 53113 Bonn, Germany, aroesler@uni-bonn.de.

1



1 Introduction

Consider a setting with endogenous information, in which the distribution of posterior types

of agents emerges from the information acquisition or disclosure choices of the agents. In the

process of Bayesian updating, mixtures over distributions are formed, an operation under

which the increasing hazard rate property is not generally preserved. That is, for a prior

distribution F with support X ⊆ R and a family of distributions {G(·|x)}x∈X with support

S ⊆ R, even if all of these distributions have an increasing hazard rate this is not generally

the case for the mixture distribution

G(s) =

∫
X
G(s|x) dF (x).

Consequently, even if the prior distribution of types has an increasing hazard rate, the

distribution of posterior types induced by the endogenous choices of agents may not have

this property.

In mechanism design settings, in which agents’ information is endogenous, conditions

that guarantee regularity of the distribution of posterior types are essential for tractability.1

Without this assumption a circular effect could arise: small changes in the information level

of agents could result in significant changes of the structure of the optimal mechanism, which

would change the incentives to acquire or disclose information. This effect would render the

model fragile, complicate the analysis tremendously, and make the model untractable. Under

what conditions can we guarantee that all feasible choices of agents lead to regularity of the

distribution of posterior types?

The main objective of this note is to identify sufficient conditions on the primitives of

an information structure that guarantee that the distribution of posterior estimates has an

increasing hazard rate, increasing virtual valuations or costs.2 This characterization result

is important for the emerging literature on mechanism design with endogenous information

of agents. This literature dispenses with the common assumption that the distribution of

types, and the private information held by agents, is exogenously given. It includes an infor-

1By contrast, in settings with exogenous information the role of regularity conditions is to simplify the
analysis and avoid technicalities, specifically ironing-out procedures.

2 It is a well-known problem in the economic literature that certain properties are not generally preserved
under aggregation or mixtures. A prominent example is the single-crossing property introduced by Milgrom
and Shannon (1994), which is not preserved under aggregation. Quah and Strulovici (2012) provide sufficient
conditions that guarantee that the single crossing condition is preserved under aggregation. We provide a
similar result: sufficient conditions for the increasing hazard rate property to be preserved under mixtures.
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mation stage in the analysis, in which information is either acquired by market participants

or disclosed to them.3

In our analysis, we focus on the standard setting for mechanism design problems, in which

agents are risk-neutral and have quasi-linear preferences. In such a framework, all payoff-

relevant information of agents that is necessary to characterize the optimal mechanism in

the second stage is captured in the posterior estimates (types) of the agents. It is therefore

not necessary to know the full posterior distribution, but it suffices to know its mean.

Our first result is an “impossibility result”. We identify a class of signal structures for

which the resulting distribution of posterior types will always have a decreasing hazard

rate, irrespective of the prior distribution of types.4 If a signal structure from this class is

contained in the set of feasible signal structures that agents can choose from, it is impossible

to guarantee that the induced distribution of posterior types has an increasing hazard rate

for all feasible choices of agents.

Our second result is a “possibility result”. We identify sufficient conditions on the signal

structure that guarantee that certain regularity properties of the prior distribution – an in-

creasing hazard rate, increasing virtual valuations or costs – translate to the distribution of

posterior estimates.5

Straightforward applications of our results are the auction design problems analyzed in

Shi (2012) and Ganuza and Penalva (2014). Shi (2012) studies optimal auctions with in-

formation acquisition by the bidders, whereas the focus of Ganuza and Penalva (2014) is

on information disclosure in optimal auctions. The authors of these papers choose different

approaches to circumvent the tractability problems that arise in their models. Shi (2012) im-

poses the regularity assumption directly on the distribution of posterior estimates, assuming

that it has increasing virtual valuations. Ganuza and Penalva (2014) restrict attention to a

specific information structure to make their model tractable. The results presented in this

note make it possible to identify classes of information structures to which the results in Shi

(2012) and Ganuza and Penalva (2014) apply. These applications are discussed in Section 4.

3Examples include Bergemann and Välimäki (2002) and Shi (2012) who study information acquisition,
whereas the focus in Bergemann and Pesendorfer (2007), Esö and Szentes (2007), Ganuza and Penalva (2010),
Li and Shi (2013) and Ganuza and Penalva (2014) is on information disclosure. Bergemann and Välimäki
(2007) provide a good survey of the topic.

4This is the case for signal structures that are characterized by a family of conditional distributions that
all have a decreasing hazard rate.

5Formally, signals must be characterized by a family of survival functions that is log-concave. This property
is a generalization of the increasing hazard rate property to multivariate distributions.
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To further illustrate how our results can be applied, we discuss information disclosure in

allocation problems without monetary transfers.6 We find that, by choosing an appropriate

information technology, the designer can guarantee that the optimal mechanism is a full

screening mechanism. This result is robust in the sense that the designer does not need to

know the prior distribution of agents’ types.

The rest of the note is organized as follows. In Section 2 we introduce the formal model

of the informational environment. Section 3 contains our theoretical results, with the main

results presented in Subsection 3.3. Applications are discussed in Section 4. We conclude with

some further discussion and remarks in Section 5. All proofs are relegated to the appendix.

2 The Informational Setting

We consider the following model. There exists an unknown state, represented by a real-

valued random variable X. The common, initial beliefs about the state are captured by an

absolutely continuous prior distribution F with interval support X ⊆ R. We assume that X

has finite expectation under F , µ = E(X) <∞.

A signal is characterized by a real-valued random variable S with typical realizations

s ∈ [s, s] ⊆ R, and a family of conditional distributions {G(s|x)}x∈X , where

G(s|x) := Pr(S ≤ s|X = x)

is the probability to observe a signal s′ ≤ s if the state is x.7 We assume that for every x ∈ X ,

G(s|x), is absolutely continuous in s, that is, admits a density function g(s|x) > 0 almost

everywhere.8 Together with the prior distribution F , a signal induces a joint distribution on

(X,S), a so-called information structure. We denote the marginal distribution of S by G.

Agents update their beliefs according to Bayes’ rule. The posterior distribution of X

conditional on observing s is G(x|s), and the resulting conditional expectation is

X̂(s) = E [X|S = s] =

∫
X
x dG(x|s). (1)

6For the case of exogenous private information of agents this problem has been studied for example in
Condorelli (2012) and Chakravarty and Kaplan (2013).

7We allow for the supports of X and S to be the real line.
8This assumption implies that there is some noise in the signal. That is, upon observing a signal realization,

agents cannot exclude any states. The set of states to which an agent attaches a positive probability is the
same for all signal realizations. This assumption is sometimes called the “non-shifting support” assumption
in the literature.
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We call X̂(s) the posterior estimate. Without loss of generality we can assume that X̂(s)

is increasing in s, which implies that an inverse function X̂−1 exists.9 For a given prior

distribution F , every signal S results in a distribution of posterior estimates, represented by

a random variable X̂ = E [X|S] with distribution function

H(x̂) := G
(
X̂−1(x̂)

)
=

∫
X
G(X̂−1(x̂)|x) dF (x),

and quantile function H−1(p) = inf{x̂|H(x̂) ≥ p} for p ∈ [0, 1].

We assume that signals are monotone, that is, that high signal realizations are more

favorable than low signal realizations in the sense of Milgrom (1981). This condition implies

that it is more likely to observe a high signal realization s if the underlying state x is high,

than if it is low.

Assumption 1 (Monotone Signals). For all signal realizations s, s′ ∈ S with s′ > s, signal

realization s′ is more favorable than s. That is, for every non-degenerate prior distribution

F on X, if s′ > s, then the posterior distribution G(x|s′) dominates G(x|s) in terms of

first-order stochastic dominance, G(x|s′) ≥FOSD G(x|s).

If signal S is characterized by conditional densities {g(s|x)}s∈S , then Assumption 1 is

equivalent to the monotone likelihood ratio property.10

Examples

Our model captures many information technologies. We now provide some examples that

are frequently used in the literature.

Example 1 (Normal Experiments). Suppose that the states are normally distributed

X ∼ N (µX , σ
2
X), and signal S is given by S = X + ε where ε is a normally distributed noise

term, ε ∼ N (0, σ2
ε). It follows that signals are also normally distributed, S ∼ N (µX , σ

2
X+σ2

ε),

and the posterior estimate after observing signal realization s is

X̂(s) =
σ2
ε

σ2
X + σ2

ε

µ+
σ2
X

σ2
X + σ2

ε

s.

The posterior estimates are linear in S and normally distributed. 4
9For a formal justification see Shaked et al. (2012).

10Signal S has the (strict) monotone likelihood ratio property (MLRP), if for every x > x′, g(s|x)
g(s|x′) is strictly

increasing in s.
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Example 2 (Truth-or-noise technology). Let the state space be X. The continuously dif-

ferentiable distribution F with finite mean µ represents the prior beliefs. A truth-or-noise

technology provides with some probability α ∈ [0, 1] a perfectly informative signal s = x and

with probability (1 − α) pure noise, independently drawn from prior distribution F . The

receiver cannot distinguish which kind of signal he observes. For signal realization s, the

posterior estimate is X̂(s) = αs+ (1− α)µ. 4

Example 3. Suppose X ∼ U [0, 1]. If the state is x the resulting signal realizations are

normally distributed with mean x and variance 1, that is, G(s|x) ∼ N (x, 1). The joint

density which characterizes this information structure is

f(x, s) = g(s|x)f(x) =

 1√
2π
e−

(s−x)2

2 if 0 ≤ x ≤ 1,

0 otherwise.

Upon observing signal realization s, the resulting posterior estimate is:

X̂(s) =s+ φ(0) · (1− 2s) = s · (1− 2φ(0)) + φ(0),

where φ(s) :=
√

2
π
·

[
e−

s2
s −e−

(s−1)2

2

]
erf
(

s√
2

)
− erf

(
s−1√

2

) , and erf is the error function.11 Note that, as in the

previous examples, the posterior estimate is linear in the signal realizations. 4

3 Sufficient Conditions

In this section, we study the implications of properties of information structures for the

distribution of posterior estimates, and identify sufficient conditions on the primitives of

information structures for the distribution of posterior estimates to have a monotone hazard

rate, increasing virtual valuations or costs.

Definition 1. The random variable X with distribution F and density f has an increasing

hazard rate, if the hazard rate function

λ(x) =
f(x)

1− F (x)

is increasing in x.

The random variable X has a decreasing hazard rate, if λ(x) is decreasing in x.

11 erf (s) = 2√
π

∫ s
0
e−t

2

dt
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An equivalent condition to X having an increasing (decreasing) hazard rate is that the

survival function F (x) = 1− F (x) is log-concave (log-convex).12

Remark 1. Interpreting the state x as time, the hazard rate λ(x) = f(x)
1−F (x)

has a natural

interpretation as the failure rate of a component: It represents the probability of an in-

stantaneous failure of a component conditional on the component still being intact at time

x.

To establish our results we proceed in two steps. First, we identify sufficient conditions on

the prior and signal distribution for the marginal distribution of signals to have an increasing

hazard rate, respectively log-concave density (Lemma 1). We then show that these properties

transfer to the distribution of posterior estimates (Proposition 1 and Proposition 2).

3.1 Induced properties of the marginal distribution of signals

A basic observation is, that the marginal distribution of signals is the mixture distribution

over the conditional distributions characterizing the signal, with the prior being the mixing

distribution

G(s) =

∫
X
G(s|x) dF (x).

It is a well-known result in statistics that the decreasing hazard rate property is preserved

under mixtures.13 For the increasing hazard rate property – the more important property for

economics – the result is less clear-cut since the class of increasing hazard rate distribution

is not closed under mixtures.

To develop some intuition about why the increasing hazard rate property is not necessarily

preserved under mixtures, it is useful to think of the hazard rate function as representing

the failure rate of a component (cf. Remark 1). A basic insight is that for mixtures of

distributions early failures are likely to arise from distributions with high hazard rates. As

Finkelstein and Cha (2013) put it “the weakest items are dying out first”. More precisely,

for a given prior distribution, consider the hazard rate of a mixture of a family of increasing

(respectively decreasing) hazard rate distributions. For the mixture, early failures are more

likely to arise from distributions with high hazard rates (at that time) whereas late failures

are more likely to originate from low hazard rate distributions. This effect amplifies the

features of decreasing hazard rate distributions but may offset the increasing hazard rate

12The natural definition of an increasing hazard rate for random variables without densities is, to say that
X has an increasing hazard rate if the survival function is log-concave.

13See Barlow and Proschan (1981). In the appendix (Lemma 2) this result is formally stated.
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Figure 1: Hazard rate functions λ1, λ2 of Weibull distributionsW(1.2, 1) andW(100, 1), with scale parameter
1 and shape parameters k1 = 1.2 and k2 = 100; and mixture hazard rate λm of their equal-weight mixture.

properties of the distributions when they are mixed. Consequently the increasing hazard

rate property is not necessarily preserved under mixtures. Figure 1 illustrates an example of

two distributions with increasing hazard rate whose mixture does not have this property.14

The following lemma identifies a set of sufficient conditions for the primitives of an infor-

mation structure that guarantee that the marginal distribution of signals has an increasing

hazard rate.15

Lemma 1. Suppose the information structure (X,S) satisfies Assumption 1.

If the family of survival functions {G(s|x)}x∈X is log-concave in (s, x), then if the prior

distribution F has an increasing hazard rate, so has the marginal distribution of signals G.

Moreover, if the family of densities {g(s|x)}x∈X is log-concave in (s, x), then if the prior

density f is log-concave, so is the marginal density of the signal g.

3.2 Link to the distribution of posterior estimates

In order to obtain a general characterization result we still need to establish a relation

between the marginal distribution of signals and the distribution of posterior estimates. For

many of the information structures commonly used in the literature, among them the ones

of Example 1 – 3, the posterior estimate is a positive linear transformation of the signal.

14For further examples, see Finkelstein and Cha (2013) and Gurland and Sethuraman (1994).
15This set is the least restrictive set of sufficient conditions we are aware of. The lemma is based on a

theorem by Lynch (1999). For sufficient conditions for the case of a discrete state space see Block et al.
(2003).
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Assumption 2 (Linear Posterior Estimates). Posterior estimates are a positive linear trans-

formation of the signal:

X̂ = aS + b, a, b ∈ R, a > 0.

For posterior estimates that do not satisfy this linearity condition, we impose the following

smoothness condition.

Assumption 3 (Smoothness). The distributions F and {G(·|x)}x∈X are twice continuously

differentiable with strictly positive and bounded densities, 0 < f < f and 0 < g(·|x) < g

∀x ∈ X .

Many information structures satisfy both Assumption 2 and Assumption 3. We can now

state our result, that for information structures satisfying at least one of these assumptions,

the regularity properties of the marginal distribution of signals translate to the distribution

of posterior estimates.

Proposition 1. Suppose that the information structure (X,S) satisfies Assumption 1, either

Assumption 2 or Assumption 3, and that the posterior estimate is a concave (convex) function

of the signal. Then, if the marginal distribution of signals G has an increasing (decreasing)

hazard rate, so has the distribution of posterior estimates H.

Proposition 2. For information structures satisfying Assumption 1 and Assumption 2, if

the marginal density of signals g is log-concave, so is the density of posterior estimates, h.

Remark. To avoid introducing new concepts and notation, the result of Proposition 2 is

stated for log-concave densities. It should be noted, however, that the result extends to ρ-

concave densities with ρ-concavity defined as in Caplin and Nalebuff (1991a,b) and Ewerhart

(2013).

3.3 Main Results

Combining the results from Subsection 3.1 and Subsection 3.2, we can finally present our

main result.

Theorem 1. Suppose that the information structure (X,S) satisfies Assumption 1, and

either Assumption 2 or Assumption 3.

(i) If {G(s|x)}x∈X is a family of decreasing hazard rate distributions and the posterior

estimate is a convex function of the signal, then for any prior F , the distribution of

posterior estimates H has a decreasing hazard rate.
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(ii) If the family of survival functions {G(s|x)}x∈X is log-concave in (s, x) and the posterior

estimate is a concave function of the signal, then if the prior distribution F has an

increasing hazard rate, so does the distribution of posterior estimates H.

Remark. It should be noted that the conditions required to obtain the result in (ii) are

significantly stronger than those in (i). Under the assumptions in the theorem, to guarantee

that the distribution of posterior estimates has a decreasing hazard rate it suffices that for

every x ∈ X , the conditional distribution G(·|x) has a decreasing hazard rate. In particular,

the result holds for any prior distribution. One can also think of this result as an “impos-

sibility result”: If signals are characterized by conditional distributions with a decreasing

hazard rate, this makes it impossible that the increasing hazard rate property of the prior

distribution translates to the distribution of posterior estimates.

By contrast, the possibility result for the increasing hazard rate in (ii), requires that the

prior distribution has an increasing hazard rate and that the family of conditional survival

distributions {G(s|x)}x∈X is log-concave in (s, x).16

We can also establish sufficient conditions for the virtual valuations and costs of the

posterior estimates to be increasing.

Definition 2. A random variable X with distribution F and density f has increasing virtual

valuations if

Jv(x) = x− 1− F (x)

f(x)
,

is increasing in x.

It has increasing virtual costs if

Jc(x) = x+
F (x)

f(x)
,

is increasing in x.

The following result is a direct corollary to Theorem 1.

Corollary 1. Let (X,S) be an information structure that satisfies Assumption 1, and either

Assumption 2 or Assumption 3.

If the family of survival functions {G(s|x)}x∈X is log-concave in (s, x) and the posterior

estimate is a concave function of the signal, then if the prior distribution F has an increasing

hazard rate, the distribution of posterior estimates has increasing virtual valuations.

16 A function ψ : R2 → R is log-concave, if its domain dom ψ is convex and

ψ(αx+ (1− α)y) ≥ ψ(x)αψ(y)1−α ∀x, y ∈ dom ψ, α ∈ (0, 1) .

10



In order to guarantee that the distribution of posterior estimates has increasing virtual

costs, slightly stronger conditions are required.

Theorem 2. Let (X,S) be an information structure that satisfies Assumption 1 and As-

sumption 2.

If the family of densities {g(s|x)}x∈X is log-concave in (s, x), then if the prior density f is

log-concave the distribution of posterior estimates has increasing virtual costs.17

4 Applications

4.1 Auctions

A straightforward starting point for the discussion of applications of our results, is to connect

them to the existing research on auction design with endogenous information. Our results

are effective in settings in which regularity of the posterior estimates does not arise from

equilibrium considerations. This is for example the case in Shi (2012), who studies informa-

tion acquisition in optimal auctions, as well as in Ganuza and Penalva (2014) who analyze

information disclosure in optimal auctions.18 In both settings, the implemented mechanism

affects agents’ incentives to acquire or disclose costly information and these informational

effects have to be taken into account when designing the optimal mechanism. In both papers,

the set of information technologies from which agents can choose is restricted, such that all

information technologies in the feasible set can be compared in terms of their informational

content.

4.1.1 Information Acquisition in Optimal Auctions

Shi (2012) characterizes an optimal, that is revenue maximizing, selling mechanism in a

setting in which buyers do not know their private valuations ex-ante, but can acquire costly

information prior to participating in the mechanism. The timing is as follows: 1. The seller

17The statement of the theorem can be strengthened. The conditions stated in the theorem imply that the

generalized virtual valuation and cost functions Jv(x) = x− γ 1−F (x)
f(x) and Jc(x) = x+ γ F (x)

f(x) are increasing

in x for every γ > 0.
18 Bergemann and Pesendorfer (2007) study a setting in which the designer can choose what information

to provide to bidders, and the selling mechanism. In this setting the non-decreasing virtual valuations prop-
erty follows from equilibrium considerations: If providing information would result in non-increasing virtual
valuations, the seller would rather not differentiate between buyers, but move the “ironing out” procedure
to the information stage by not providing information to the agents. The result relies on the richness of the
set of feasible information technologies that the designer may choose from. The information technologies in
this set are not ordered in terms of informativeness and no predictions about the optimal precision-level of
disclosed information can be made.
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announces a mechanism (and suggests an information acquisition profile). 2. Bidders acquire

costly information: they choose the precision level of the signal that they will obtain about

their valuation of the object. 3. Based on their chosen precision levels of information, bidders

obtain a (noisy) signal about their valuation and update their beliefs accordingly. 4. Bidders

submit their bids, and the object is sold according to the mechanism previously announced

by the seller.

In this environment, when choosing the optimal mechanism, the seller has to take into

account that his choice of a mechanism will affect the incentives of bidders’ to acquire infor-

mation. For the symmetric case, in which all bidders acquire the same level of information,

Shi (2012) shows that, if the distribution of posterior estimates is regular and the number

of bidders is sufficiently large, the optimal mechanism is a standard auction with a reserve

price. The optimal reserve price in the case with endogenous information acquisition is closer

to the prior mean than the standard reserve price if the equilibrium information level were

exogenously given.

Our results of Section 3 allow us to identify a class of information structures which

satisfy the regularity condition on posterior estimates, necessary to establish the results

of Shi (2012), without having to impose these regularity condition at the interim stage.19

This class includes all information structures satisfying the conditions in Theorem 1 (ii) or

Corollary 1. Examples include truth-or-noise technologies with increasing hazard rate prior

distributions; and information structures with S = X + ε, an increasing hazard rate prior

distribution and noise with log-concave density.20

4.1.2 Information Disclosure in Optimal Auctions

Ganuza and Penalva (2014) study information disclosure in optimal auctions. In their set-

ting, the seller chooses the selling mechanism, as well as the precision level of the information

disclosed to bidders before the auction. The seller’s choices are publicly observable, that is,

known to all bidders. Prior to the auction, bidders observe a private, partially informative

signal about their valuations for the object and update their beliefs accordingly before partic-

ipating in the auction. The informational content of the signal is determined by the precision

19The result in Shi (2012) is based on further assumptions on the distribution of posterior estimates. A
sufficient condition for these assumptions to hold is that, when switching from one signal to a more precise
(and thus more costly) signal, the resulting distributions of posterior estimates are ordered in terms of the
dispersive order. This is the case for information structures satisfying Assumption 2 (cf. Proposition 4 in
Ganuza and Penalva (2010)).

20For classes of functions which have an increasing hazard rate or log-concave densities see Bagnoli and
Bergstrom (2005).
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level chosen by the seller.

In their analysis, Ganuza and Penalva (2014) assume that signals have the structure

of a truth-or-noise technology (cf. Example 2). The authors state in their conclusion that

“the model is standard (and general) in all dimensions but the choice of the set of available

signals”. This simplifying assumption that signals have the structure of a truth-or-noise-

technology has the following convenient implications: 1. For truth-or-noise technologies, the

regularity properties, like increasing virtual valuations of the prior distribution translate

to the distribution of posterior estimates.21 2. Linearity of the information structure keeps

the model tractable. 3. Information technologies are naturally ordered in terms of their

informational content (precision) and it is straightforward to define a cost-function which

captures the idea that information disclosure is costly.

If we allow for a larger set of information structures that satisfy Assumption 1 and As-

sumption 2 (linearity), the last two of the aspects mentioned above (2. and 3.) are preserved.22

However, for these more general information structures the marginal distribution of signals

is usually not the same as the prior distribution. Consequently, the increasing virtual valua-

tion property will in general not translate from the prior distribution to the distribution of

posterior estimates. In this case, our results of Section 3 can be applied to characterize suffi-

cient conditions on the primitives of information structures for the distributions of posterior

estimates to have the increasing virtual valuations property.

The results in Ganuza and Penalva (2014) generalize to the class of information structures

satisfying Assumption 1, Assumption 2 and the conditions in Theorem 1 (ii) or Corollary 1.23

The main insights are:

1. In an optimal auction, the auctioneer discloses more information than in a standard

auction in which the object is always sold. Here, an optimal auctions is a standard

auction with a reserve price that is optimal given the precision level of the information

disclosed to bidders.

2. The level of information disclosed to bidders in an optimal auction is weakly increasing

in the number of bidders.
21For truth-or-noise technologies, the marginal distribution of signals is the same as the prior distribution.

Moreover, due to the linearity of the posterior estimates in signals, the regularity properties translate from
the marginal distribution of signals to the distribution of posterior estimates.

22The class of information structures that satisfy Assumption 2, are naturally ordered in terms of super-
modular precision (cf. Ganuza and Penalva (2010), Proposition 4).

23It is straightforward to replicate the proofs in Ganuza and Penalva (2014) for these more general infor-
mation structures, using our results in Section 3 and the linearity of posterior estimates (Assumption 2). We
refer the reader to the discussion in Ganuza and Penalva (2014).
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The intuition behind these results is the following. In a standard auction (without reserve

price), if a seller discloses information, he has to leave informational rents to the bidders.

If information is costly, the auctioneer will therefore not reveal all information. A reserve

price reduces the informational rents of bidders and thus increases the seller’s incentives to

disclose information.

4.2 Optimal Mechanisms without Money

Another interesting application of our results are allocation problems without monetary

transfers as studied for example in Condorelli (2012) and Chakravarty and Kaplan (2013).

These model consider the allocation of k indivisible heterogeneous objects to n agents when

monetary transfers or charging personalized prices is infeasible or undesirable, but a benevo-

lent designer can screen the agents.24 Screening yields non-monetary costs which are wasted,

that is, screening generates a deadweigh loss. More specifically, if the seller chooses to screen

agents, he implements a mechanism that requires the agents to invest in some costly non-

productive action (e.g. exerting effort, spend time in waiting lines, etc.) in order to signal

their private types. Incentive compatibility requires that the non-monetary costs incurred

by the agents correspond to Vickrey-payments. That is, the expected (wasteful) costs of an

agent capture the externalities that he imposes on the other agents.

In this setting, Condorelli (2012) characterizes the optimal mechanism within the class of

incentive compatible direct allocation mechanisms, that is, the mechanisms that maximizes

ex-ante welfare. Condorelli shows that, if buyers’ valuations have a decreasing hazard rate, a

full screening mechanism is optimal whereas in any other case, due to the trade-off between

a more efficient allocation and screening costs, only partial or no screening is optimal.

Our results of Section 3 can be applied to extend the model studied in Condorelli (2012)

to a setting in which agents do not know their private valuations or tastes ex-ante and the

seller can provide information through a noisy channel, for example by advertising a concert

or sport event. We assume that the designer has to provide some information to make

market participants aware of the availability of his products, but cannot provide perfectly

informative private signals. For example, an event manager has to advertise a concert to

attract interested customers but cannot perfectly control how interested parties perceive

the information provided to them through the advertisement. Formally, this means that we

24Typical examples mentioned in the literature are the allocation of donor organs, or ticket sales for
concerts or sport events. Waiting lines can serve as costly screening instruments.
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exclude perfectly informative signals and pure noise from the set of feasible information

technologies available to the designer. The setting studied in Condorelli (2012) is linear,

hence the distribution of posterior estimates captures all relevant information to determine

the optimal mechanism. Applying our insights from Section 3 yields the following result.

Corollary 2. Suppose the seller implements a signal that is characterized by conditional

distributions with decreasing hazard rate. Then for any prior distribution of agents’ types, it

is optimal for the seller to implement a full screening mechanism.

We want to emphasize the following remarkable robustness feature of this result: As long

as the designer can implement a signal characterized by decreasing hazard rate distributions,

he knows that a full screening mechanism is optimal, irrespective of the prior type distribution

of agents. To implement the optimal mechanism the designer therefore does not need to know

the prior distribution.25

5 Discussion and Concluding Remarks

In this note we discussed properties of information structures and their implications for the

distribution of posterior estimates. We specifically focused on identifying conditions such

that the induced distribution of posterior estimates satisfies certain regularity properties

that are commonly used in the mechanism design literature.

An important insight of the discussion is, that the increasing hazard rate property may

not be preserved under mixtures of distribution functions, an operation which occurs during

the updating process. For certain signal structures it is impossible that the distribution of

posterior estimates has an increasing hazard rate. However, we identified sufficient conditions

on the signal structure that guarantee that the increasing hazard rate property translates

from the prior distribution to the distribution of posterior estimates.26

We used our results to identify classes of information environments to which the results

on information acquisitions and disclosure in optimal auctions of Shi (2012) and Ganuza and

25The results of Corollary 2 extends to two-sided matching market models as discussed in Hoppe et al.
(2009) and Roesler (2014). In these settings, if the designer implements an information technology char-
acterized by decreasing hazard rate distributions, the welfare optimal mechanism is to screen agents and
implement the positive assortative matching.

26As a corollary we obtain sufficient conditions for the distribution of posterior estimates to have increasing
virtual valuations. However, these conditions are not tight and could probably be relaxed, using the insight
from Ewerhart (2013) that

(
− 1

2

)
-concavity is a tight sufficient condition for increasing virtual valuations,

which is a weaker condition than an increasing hazard rate. The mathematical methods that we use to
obtain our results do not extend to the case that would be needed to pursue this question systematically. We
therefore second the statement of Hardy et al. (1952) that “the complications introduced by zero or negative
values [are] hardly worth pursuing systematically”.
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Penalva (2014) apply. Moreover, we discussed information disclosure in allocation problems

without money as for example studied in Condorelli (2012) or Chakravarty and Kaplan

(2013). We showed that whenever signals are characterized by a family of decreasing hazard

rate distributions, a full screening mechanisms is optimal.

We think that our results will be valuable beyond the applications discussed in this note,

specifically for research on mechanism design problems with endogenous information. For

such problems, the insights of Section 3 can be used to restrict attention to a set of feasible

information structures for which the optimal mechanism is of a particular form. This allows

to keep mechanism design problems with endogenous information tractable, an important

first step to address new questions and develop new insights on this topic.

Appendix

Proof of Lemma 1. Suppose the information structure (X,S) satisfies the slightly stronger

condition that f is log-concave. In this case, G(s, x) := G(s|x)f(x) is log-concave, since the

product of two log-concave functions is log-concave. The survival function of the marginal

distribution G is given by:

G(s) =

∫
X

G(s|x)f(x) dx.

By Prékopa’s Theorem (1973), log-concavity is preserved by integration and it follows that

G(s) is log-concave. Consequently, G has an increasing hazard rate (cf. Definition 1).

The same line of reasoning can be used to prove that log-concavity of f and g(s|x) implies

log-concavity of g.

For the proof of the general case, which only requires that F has an increasing hazard

rate, observe that by Assumption 1, for every s > s′, G(x|s) ≥FOSD G(x|s′). This implies,

G(s|x) ≥FOSD G(s′|x) for all x > x′, which is equivalent to G(s|x) = 1 − G(s|x) being

increasing in x for every s ∈ S. The result then follows by Theorem 2.1 in Lynch (1999).

Proof of Proposition 1.

Case 1: Suppose the information structure (X,S) satisfies Assumption 1 and Assump-

tion 2.27 That is, suppose X̂ = aS+b with a > 0. This is equivalent to S = X̂−b
a

. Given mono-

tonicity of signals, for every x̂ ∈ X̂ , X̂(s) ≤ x̂ ⇔ s ≤ x̂−b
a

. This implies H(x̂) = G
(
x̂−b
a

)
.

Let η(x̂) := x̂−b
a

. For a > 0, η(x̂) is increasing in x̂. Moreover,

h(x̂) =
dG

dη

dη

dx̂
=

1

a
· g (η(x̂)) . (2)

27In this case, the posterior estimate is a concave and convex function of the signal.
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It follows that

λH(x̂) =
1

a
· g (η(x̂))

1−G (η(x̂))
.

Given that a > 0 and η(x̂) is increasing in x̂, it follows that, if G has an increasing (decreas-

ing) hazard rate then λH(x̂) is increasing (decreasing) in x̂ which implies that H (resp. X̂)

has an increasing (decreasing) hazard rate.

Case 2: Suppose the information structures (X,S) satisfies Assumption 1 and Assumption 3.

These conditions imply that X̂(s) is continuously differentiable and strictly increasing in s.

By the inverse function theorem, X̂ is invertible. That is, there exists a twice continuously

differentiable function η := X̂−1, and the first and second derivative of η are given by

η′(x̂) =
1

X̂ ′ (η(x̂))
and η′′(x̂) = − X̂ ′′(η(x̂))(

X̂ ′(η(x̂))
)3 .

By Assumption 1, η(x̂) is strictly increasing in x̂. This implies that η′(x̂) > 0 for every x̂.

Moreover, if X̂ is concave, then η′′(x̂) > 0, that is, η is convex. Similarly, if X̂ is convex,

then η′′(x̂) < 0 and η is concave.

For every x̂, η(x̂) determines the signal realization s that results in the conditional ex-

pectation x̂. With these specifications, S = η(X̂) and H(x̂) = G(η(x̂)). Since G and η are

both continuously differentiable so is H, and it follows that

h(x̂) =
dG

dη

dη

dx̂
= g(η(x̂)) · η′(x̂).

It follows that the hazard rate function of X̂ is given by

λH(x̂) = η′(x̂)
g(η(x̂))

1−G(η(x̂))
.

Its derivative is

λ′H(x̂) = η′′(x̂)ψ(x̂) + η′(x̂) · ψ′(x̂),

with ψ(x̂) := g(η(x̂))
1−G(η(x̂))

.

If G has an increasing (decreasing) hazard rate, then ψ(x̂) = g(η(x̂))
1−G(η(x̂))

is increasing

(decreasing). Given that η′(x̂) > 0 for every x̂, it follows that the second summand of λ′H(x̂)

is increasing (decreasing) in x̂. Moreover, if X̂ is concave (convex) then η′′(x̂) > 0 (η′′(x̂) < 0),
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which implies that the first summand is increasing (decreasing).

It follows that the distribution of posterior estimates H has an increasing hazard rate, if

the posterior estimate is a concave function of the signal and the distribution of signals has

an increasing hazard rate. Similarly, the distribution of posterior estimates has a decreasing

hazard rate, if the distribution of signals has a decreasing hazard rate and the posterior

estimate is a convex function of the signal.

Proof of Theorem 1.

(i) As mentioned in Subsection 3.1, it is a well-known results that the decreasing hazard

rate property is preserved under mixtures. Formally

Lemma 2 (Barlow and Proschan (1981)). Consider a family of distributions {Gθ(t)}θ∈Θ

that all have a decreasing hazard rate. Then, for any mixing distribution F , the mixture

distribution

G(t) =

∫
Θ

Gθ(t) dF (θ)

has a decreasing hazard rate.

It is straightforward to apply this result to information structures: Let {G(s|x)}x∈X be

the family of distributions and the prior F be the mixing distribution. Then, if for every

x ∈ X , the distribution G(s|x) has a decreasing hazard rate, Lemma 2 implies that the

marginal distribution of signals G(s) has a decreasing hazard rate. By Proposition 1 it fol-

lows that the distribution of posterior estimates, H, has a decreasing hazard rate.

(ii) The result follows directly by combining Lemma 1 and Proposition 1. Given the assump-

tions, Lemma 1 implies that the marginal distribution of signals G has an increasing hazard

rate; by Proposition 1 the distribution of posterior estimates H has the same property.

Proof of Corollary 1. The result follows directly from Theorem 1 and the fact, that an in-

creasing hazard rate implies increasing virtual valuations.

Proof of Theorem 2. Under the assumptions of the theorem, Lemma 1 implies that the

marginal density function of signals g is log-concave. Applying Proposition 1 yields that

the distribution of posterior estimates h is log-concave. It is shown in Ewerhart (2013) that

log-concavity is equivalent to ρ−concavity for ρ = −1
2
, and that this is a sufficient condition

for the virtual cost function Jc(x̂) to be increasing in x̂.

Proof of Corollary 2. Suppose the seller implements a signal that is characterized by condi-

tional distributions with decreasing hazard rate, that is, for every x ∈ X , the distribution

18



G(s|x) has a decreasing hazard rate. Then, by Theorem 1 (i), the distribution of posterior

estimates, H, has a decreasing hazard rate. By Theorem 1 and Corollary 3 in Condorelli

(2012) it follows that the optimal mechanism is a full screening mechanism.
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