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Abstract

We study the impact of information disclosure on equilibrium properties in a model

of a two-sided matching market that incorporates a large class of market design environ-

ments. In this model, each agent first privately observes an informative, but potentially

noisy, signal about his private type. The agents then enter a matching stage in which

they choose signaling investments to compete for match partners. In order to study

the impact of information disclosure, we introduce a novel criterion that orders sig-

nals in terms of their informativeness. We show that information disclosure increases

the expected total match output, but may also increase wasteful signaling investments

due to amplified competition within groups. The second effect may dominate, leading

to a decrease in expected welfare. Disclosure effects on equilibrium properties depend

on whether information is disclosed to agents on the short or on the long side of the

market. Applications to auctions, contests, and matching markets are discussed.
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1 Introduction

In most market environments the information available to market participants significantly

influences agents’ behavior and the market outcome. Examples include auctions, contests,

and various matching markets, among them school choice, college admission and labor mar-

kets. In auctions, bidding behavior as well as the revenue of an auctioneer depend on the

information available to bidders about the object being sold. Feedback provided by a com-

pany to their workers affects workers’ effort in promotion tournaments, and the precision of

grading systems in high-schools influences the outcome of college admission.

In the recent auction literature, the effects of the precision level of information available

to bidders on bidding behavior, efficiency, and expected revenue in an auction have been

studied extensively. The resulting implications for auction design have been discussed.1 It

is therefore surprising that this important topic has been little studied and is still not well

understood in other market design environments.

In this paper we address this problem and analyze the effects of information disclosure on

agents’ behavior, the resulting assignment, and welfare implications in a two-sided matching

market model. We explain how our results map to various of the aforementioned market de-

sign environments, and discuss the implications for auctions, contests and matching markets.

We consider a model of a two-sided, one-to-one matching market with a finite number

of agents on each side of the market. We refer to the two groups of agents as workers and

firms. These terms are only used to distinguish the two groups of agents. They can represent

for example workers and firms, students and schools, competitors and prizes, or bidders and

objects in auctions.

Our model is a modification of the marriage market formulated in Becker (1973), with

two-sided incomplete information. Firms have private information about their types, whereas

workers are a priori uncertain about their own types. The model has two stages: an infor-

mation stage followed by a matching stage. In the information stage, workers obtain an

informative, but typically noisy, private signal about their individual type and update their

beliefs accordingly.

The signal realizations in the information stage determine the private information of

workers. Information disclosure means that workers obtain more informative signals, which

results in a higher information level of workers. In order to study the effects of informa-

tion disclosure on equilibrium properties in the second-stage matching game, we introduce a

1Examples include Persico (2000) and Shi (2012) who study information acquisition, whereas the focus
in Bergemann and Pesendorfer (2007), Esö and Szentes (2007), Ganuza and Penalva (2010) and Ganuza and
Penalva (2019) is on information disclosure.
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criterion, which we call single-crossing precision, that orders signals in terms of their informa-

tiveness. This precision criterion is similar to those introduced in Ganuza and Penalva (2010).

It also uses the insight that a more informative signal yields a more dispersed distribution

of posterior estimates.

In the matching stage, agents take part in a matching game, in which they choose invest-

ments to compete for match partners. Investments are non-productive and serve as observable

signals about the private types of agents. This matching game was introduced and studied

by Hoppe et al. (2009) who refer to it as a matching tournament.2 They prove the existence

of a separating equilibrium in which agents are matched positively assortatively according

to their investments. In our analysis, we focus on this equilibrium.

We find that increasing the level of information available to workers increases the ex-

pected total match output as well as the expected investments of firms, whereas the expected

investments of workers may decrease. Workers always profit from information disclosed to

them, whereas this disclosure may negatively affect the welfare of firms. We show that the

second effect may be so strong that expected aggregate welfare is decreased, but also identify

conditions that guarantee that the expected aggregate welfare is increased by a higher infor-

mation level available to workers. For the case in which disclosing more precise information

is costly, we characterize the worker-optimal and the socially optimal levels of information.

The socially optimal level of information maximizes expected aggregate welfare, whereas

the worker-optimal level only takes into account the utilities of workers and maximizes the

welfare of this group.

The results are driven by two, possibly opposing, effects of information. On the one

hand, a higher information level of market participants allows for a better assignment in the

matching game, which increases expected total match output. On the other hand, disclosing

information to agents also amplifies competition within groups, which may result in increased

(wasteful) investments in the matching game. Our results indicate that the second effect may

dominate, resulting in decreased welfare.

These two effects are based on the following feature of two-sided markets in which agents

have private information: Agents impose externalities not only on agents within their group,

but also on agents on the other side of the market. In particular, a worker imposes a positive

externality on firms by providing a match opportunity. However, he also imposes a negative

externality on them, since more or better match opportunities lead to increased competition

among firms, which results in higher expected investments.

2Such a tournament is a generalization of a contest in which prizes are replaced by matching opportunities.
A similar model with a continuum of agents is discussed in Hopkins (2012).
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We apply the results that we establish in our general framework, to discuss the impli-

cations of information disclosure in various market design settings, focusing on auctions,

contests, and matching markets. Depending on the application, agents’ investments are in-

terpreted as wasteful signaling costs or as (monetary or non-monetary) transfers to a third

party. In each of the applications we highlight certain features of our results.

The most straightforward application of our model are two-sided matching markets, and

the implications of our results yield new insights for these settings. Even though there seems

to be a broad agreement that the level of information of agents in two-sided matching markets

is an important factor which influences agents’ behavior and the market outcome, these

informational effects are poorly understood theoretically.3 Interpreting our results as they

apply to two-sided matching markets yields one of our main contributions: To our knowledge,

we provide the first study of the impact of information disclosure, and the level of information

available to market participants, on the outcome in a two-sided matching market. The main

observations are that disclosing information may decrease expected aggregate welfare, and

that the effects depend on whether information is disclosed to the agents on the short or on

the long side of the market.

Our results can also be applied to illustrate the impact of information disclosure in

contests or rank-order tournaments, for example through feedback systems in organizations.

The flexibility of our framework provides two distinct ways to project our general model to

contests, each yielding different insights and predictions. This feature allows us to obtain

some of the existing results in the contest literature as special cases of our results. More

importantly, our analysis provides new insights for the role of feedback systems in contest. We

show that the effects of information disclosure in contests depend on the ratio of competitors

to prizes, and on the prize-structure. For example, in promotion tournaments with a large

pool of workers and only a few available positions, providing information to workers increases

overall effort, whereas this is not necessarily the case if the ratio of workers and promotions

is relatively balanced. Our results moreover suggest that information management through

feedback systems may serve as an powerful element of contest design. We derive predictions

about which feedback systems are to be expected in different organizational structures.

Our methodological contribution is highlighted in the application of our results to auc-

3A reason for this may be that most of the theoretical analysis of matching markets studies complete
information models, in which agents know their preferences over potential match alternatives. The two
aspects, that agents have private information about their characteristics and may moreover be uncertain
about their own characteristics, are hardly captured by the theoretical models in the literature. Our model
incorporates both of these aspects and therefore takes a first step towards a theoretical analysis of the
effects of private information and the information level of market participants on the equilibrium outcome
in matching markets.
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tions. We discuss how the statistical methods that we use in this paper provide an alternative

way to prove the results of Ganuza and Penalva (2010) on information disclosure in auctions.

To further illustrate the potential of these statistical methods, we show how they can be used

to strengthen and generalize the results of Ganuza and Penalva (2010).

Outline The rest of the paper is organized as follows. In Section 2 we present the model.

In Section 3 we characterize equilibrium properties for an exogenously given level of infor-

mation. In Section 4, we introduce single-crossing precision, a novel criterion to measure

the informational content of signals. The effects of information disclosure and the resulting

higher information level of market participants are discussed in Section 5. Section 6 contains

our results on the worker-optimal and socially optimal levels of information. The implica-

tions of our results for auctions, contests, and matching markets are presented in Section 7.

Related literature is discussed in Section 8, and Section 9 concludes. All proofs are relegated

to the appendix. In Appendix C, we also briefly discuss different precision criteria.

2 The Model

Consider a two-sided matching market with a finite number of agents. We refer to the two

groups of agents, constituting the two sides of the market, as workers, I = {1, . . . , n}, and

firms, J = {1, . . . , k}. These terms are only used to distinguish the two groups. Depending

on the application they may represent for example, workers and firms, men and women,

students and colleges, or competitors and prizes.

The types of workers, xi, and firms, yi, are determined by iid draws from the interval

[0, x], respectively [0, y].4 Agents’ types are independently distributed with prior distribution

FX for workers and FY for firms. We assume throughout the paper that FX(0) = FY (0) = 0

and FX and FY are continuously differentiable with positive densities, fX > 0 and fY > 0,

on the support.

There is incomplete information on both sides of the market: Firms’ types yj, are private

information to the firms, whereas workers’ do not know their types ex-ante. The distributions

FX and FY are common knowledge.5

If worker i is matched with firm j, each agent obtains match payoff xiyj, unmatched

agents produce zero output. In other words, the match value function is v(x, y) = 2xy and

match output is split equally among match partners.

4If x or y equal infinity, types are drawn from [0,∞).
5We consider this model in order to simplify notation. It is straightforward to extend the analysis to the

case in which agents on both sides of the market are uncertain about their types.
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In this model, under complete information, all workers agree on the ranking of firms and

vice versa. Our match value function is supermodular, which implies that positive assortative

matching is the allocation that maximizes expected match output and, moreover, is the only

stable matching.

We consider a two-period model which consists of an information stage followed by a

matching stage. In the first period, workers obtain an informative, private signal about their

individual types and update their beliefs accordingly. Agents then enter the matching stage,

in which they compete for match partners.

2.1 Information Stage

In the first period, the information stage, every worker observes a private signal realization

from an information technology S.

An information technology is a signal S, with typical realizations s ∈ [0, s], which is

characterized by a family of conditional distributions {G(·|x)}x∈X of signal realization.

G(s|x) := Pr(S ≤ s|X = x)

is the probability that a worker with type x receives a signal realization s′ ≤ s. We assume

that for every x ∈ X, G(·|x) is absolutely continuous, that is, admits a density function

g(·|x) almost everywhere. Together with the prior distribution FX , an information technology

induces a joint distribution on (X,S), a so-called information structure. Agents update their

beliefs according to Bayes’ rule. With a slight abuse of notation, the posterior distribution

of X conditional on S = s is G(·|s), and the resulting conditional expectation is

X̂(s) = E [X|s] =

∫
X
xdG(x|s).

We denote the marginal distribution of S by G.

We assume that high signals are more favorable than low signals in the sense of Milgrom

(1981). This condition implies that workers with high types are more likely to observe a

high signal realization than workers with low types. A high signal thus indicates a higher

underlying type of the agent than a low signal.
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Assumption 1 (Monotone Signals). For all signal realizations s, s′ ∈ S with s′ > s, signal

realization s′ is more favorable than s. That is, for every non-degenerate prior distribution F

on X, if s′ > s, then the posterior distribution G(·|s′) dominates G(·|s) in terms of first-order

stochastic dominance, G(·|s′) ≥FOSD G(·|s).

This assumption implies that posterior estimates are strictly increasing in signal realiza-

tions:

E [X|s′] > E [X|s] , for every s′ > s.

If signal S is characterized by conditional densities {g(·|x)}x∈X , then Assumption 1 is equiv-

alent to the strict monotone likelihood ratio property.6

For a given prior distribution F , every information technology S results in a distribution

of posterior estimates, represented by a random variable X̂ := E [X|S]. Given Assumption 1,

the function X̂ : S → R+, with X̂(s) = E [X|s] is strictly increasing in s, which implies that

there exists an inverse function, X̂−1. The distribution function of the posterior estimates is

H(x̂) = G
(
X̂−1(x̂)

)
=

∫
X
G
(
X̂−1(x̂)|x

)
dF (x),

with quantile function H−1(u) = inf{x̂|H(x̂) ≥ u} for u ∈ [0, 1].

We provide two examples of information technologies that are commonly used in the

literature.

Example 1 (Truth-or-noise technology).

Suppose that X is the set of states with prior distribution FX . A truth-or-noise technology

provides with some probability α ∈ [0, 1] a perfectly informative signal s = x and with

probability (1−α) pure noise, independently drawn from prior distribution FX . The receiver

cannot distinguish which kind of signal he observes. For signal realization s, the conditional

expected value is E [X|s] = αs+ (1− α)E [X] . 4

Example 2 (Normal Experiments).

Suppose that workers’ types are normally distributed, X ∼ N (µX , σ
2
X), and that signal S

is given by S = X + ε, with a normally distributed noise term, ε ∼ N (0, σ2
ε ). It follows that

signals are normally distributed, S ∼ N (µX , σ
2
X + σ2

ε ). The posterior estimates are given by

X̂(s) =
σ2
ε

σ2
X + σ2

ε

µ+
σ2
X

σ2
X + σ2

ε

s,

thus linear in S, and again normally distributed. 4
6The collection {g(·|x)}x∈X has the strict monotone likelihood ratio property (MLRP) if for every x > x′,

g(s|x)
g(s|x′) is strictly increasing in s.
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In our setting, workers do not know their types a priori. Thus, in the matching stage,

workers can only condition their decisions on the information obtained in the information

stage. For a given prior distribution, FX , the information technology S determines the dis-

tribution of conditional expected types of workers in the matching stage, HS(x̂), which is

common knowledge. The individual expected types conditional on the private signal real-

izations are x̂i = E [X|si]. With a slight abuse of terminology, we refer to them as workers’

posterior types. They are private information of the workers. Similarly, for firms, type yj is

private information to firm j. Given the linearity of our model, if a worker with posterior

type x̂i is matched to a firm with type yj, the expected match output for each of the match

partners is x̂iyj.

2.2 Matching Stage

In the second period, the matching stage, all agents simultaneously choose an individual

investment that serves as a costly signal of their type. Agents on each side of the market

are ranked based on their investments to then be matched positively assortatively. In case of

equal investments, we assume random tie-breaking. Under this assignment rule the worker

with the highest investment will be matched to the firm with the highest investment, the

agents with the second highest investments in each of the groups will be matched, and so

on.7 If worker i invests b and is matched with firm j, his payoff is

ui ((xi, b), yj) := xiyj − b.

A (pure) strategy for a firm is a measurable function from the set of types Y to non-negative

investments R+
0 . For workers it is a mapping from signal realizations S to investments. The

solution concept is Bayesian Nash equilibrium.

Remark. The discussion at the end of Subsection 2.1 illustrates that after the information

stage the situation is as if agents on both sides of the market have private information

about their types. We explicitly model the information stage because we are interested in

the comparative statics effects that correspond to changes in the informativeness of the

information technology of workers. One contribution of the paper is to identify the effect

of a more precise information technology on the distribution of posterior types of workers

(Section 4), to then study the comparative static effects that result from these changes

7A matching mechanism which would yield this outcome is, for example, the worker-, or firm-proposing
deferred acceptance algorithm, assuming that agents rank their potential match-partners according to the
observed investments. The assignment rule is also the natural extension to auctions, in which the highest
bidder obtains the object.
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(Section 5), and discuss the implications for various applications (Section 7).

2.3 Market Design Settings Captured by the Model

We now briefly discuss how the model captures various important market design settings.

Table 1 provides a summary.

Matching Markets The model represents a two-sided, one-to-one matching market, in

which agents on each side have homogeneous preferences about match partners. There is

two-sided incomplete information and agents invest in non-productive signaling à la Spence

(1973) to compete for match partners.8 Investments are wasteful. They solely serve as an

observable signal of the agent’s unobservable type but do not have an effect on the match

output. Agents of each group are ranked according to their observable signaling investments

to then be matched positively assortatively.

Auctions The standard private values auction setting can be mapped into a special case

of our model. There is only one firm, with type Y ≡ 1, interpreted as the auction platform

which sells an object of commonly known quality 1. The workers represent the bidders in the

auction, with their types corresponding to their valuations of the object, and investments

corresponding to their bids. The seller is represented by a third party, which collects the bids.

This interpretation yields an all-pay auction. By the revenue equivalence theorem, the results

which we present in Section 5 and Section 6 apply to all standard auctions that implement

the efficient allocation.

Contests The model also captures a rank-order tournament or contest setting in the fol-

lowing sense: Consider the firms as passive agents, who are the prizes in a contest, with

commonly known values η1:k ≥ · · · ≥ ηk:k. Workers represent the competitors who partici-

pate in the contest, workers’ types correspond to their abilities, and investments capture the

exerted effort.

3 Equilibrium Characterization

In this section we characterize the equilibrium in the second-period matching game on which

we will focus in our analysis. It is easy to see that there exist multiple equilibria, among them

8In contrast to Spence (1973), here agents do not have different cost-types but high-type agents receive
a higher payoff from a particular match than low-type agents.

9The passive firm could for example represent an auction platform. The seller is a third party who collects
the investments.
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workers firms types investments

auctions bidders –passive–9 valuations bids

contests/
tournaments

workers,
competitors

promotions,
prizes

productivity,
abilities

effort

matching
markets

students,
workers

schools,
jobs

characteristics signaling
investments

Table 1: Examples of environments captured by the model.

a pooling equilibrium in which all agents choose zero investments and the assignment is ran-

dom. We say that an equilibrium is symmetric if all workers adopt the same strategy and so

do all firms. Strategies are monotone if they are given by continuously differentiable, strictly

increasing functions. Under monotone strategies, firms’ with higher types choose higher in-

vestments and workers’ investments are increasing in signal realizations. The existence of a

symmetric separating equilibrium in monotone strategies follows directly by adapting the

results of Hoppe et al. (2009) to our setting. Given Assumption 1 there exists a unique

equilibrium of this type.

Theorem 1 (Hoppe et al. 2009). Given the assumptions in Section 2, in the second-period

matching game, there exists a unique symmetric separating equilibrium in monotone strate-

gies.

In our analysis, we will focus on this separating equilibrium. In this equilibrium, the pos-

itive assortative matching with respect to the (posterior) types of agents is implemented, all

agents of a group adopt the same strategies, and high-type agents choose higher investments

than low-type agents.

Remark. There are various reasons why it is natural to focus on the equilibrium of The-

orem 1. This separating equilibrium is the unique equilibrium that is monotone in signal

realizations. Moreover, it implements the unique stable (and core) matching, given the infor-

mation available in the market after the information stage. It is also the natural extension

to the efficient allocation in auctions and contests.

Before we can provide some intuition for the equilibrium and the formulas for expected

total output, investments and welfare in equilibrium, we need to introduce some more nota-

tion.

For a sample X1, . . . , Xn let

X1:n ≥FOSD · · · ≥FOSD Xn:n
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be the corresponding order statistics, where ≥FOSD indicates first-order stochastic domi-

nance. The random variable Xi:n represents the distribution of the ith highest among n iid

draws. In particular, X1:n = max{X1, . . . , Xn}.10

For given market sizes n, k, priors FX , FY and information technology S set

µSi:n := E
[
X̂i:n

]
and ηi:k := E [Yi:k] .

That is, µSi:n denotes the expected value of the ith order statistics of the posterior types, given

information technology S.

To obtain some intuition for this equilibrium it is instructive to analyze the reduced game

faced by agents on either side of the market separately, and relate equilibrium investments

to Vickrey-payments.11 This interpretation also more precisely demonstrates how the model

is a natural extension of a standard auction setting.

Suppose firms adopt separating strategies, and consider the situation for workers after the

information stage. In this case, the problem faced by workers in the second-period matching

game is as if they are in a contest competing for k heterogeneous prizes, where the values of

the prizes are determined by an agent’s posterior type and the expected values of the highest,

second-highest, third-highest,... types of firms. To be precise, for a worker with posterior type

x̂, the values of the prizes are x̂ · η1:k, . . . , x̂ · ηk:k. The assignment in the matching stage

is positive assortative with respect to investments. In the corresponding contest faced by

workers, this allocation rule thus prescribes that prizes be allocated to the agents in order

of their investments, where the agent with the highest investment receives the highest price.

Our model is linear, and it is well-known that in such an environment expected payoffs

of agents are fully specified by the allocation rule, and the expected payoff of the lowest

type.12 By the revenue equivalence theorem, it follows that expected investments must be

the same as in a VCG-mechanism.13 In the VCG-mechanism, each worker must pay the

amount equal to the negative externality he imposes on the other workers. For a profile

of signal realizations s1, . . . , sn, after appropriate relabeling, let the corresponding posterior

types be x̂1 ≥ · · · ≥ x̂n. We refer to the worker receiving the ith-highest signal, as (posterior)

type i. The presence of type i does not affect workers who receive a higher signal than himself,

10Hereby, we adopt the notation which is used in most of the economics literature. It should be noted that,
by contrast, the standard convention in statistics is to denote the highest order statistic by Xn:n.

11This was also pointed out by Hoppe et al. (2009). Adapting their results to our model yields the equi-
librium properties summarized in Table 2.

12A worker who receives signal realization 0 does not invest and is matched to the lowest firm with certainty.
His expected payoff is E [X|0] · ηn:k (which is 0 if n > k).

13The well-known Vickrey-Clarke-Groves (VCG) mechanisms due to Vickrey (1961), Clarke (1971) and
Groves (1973)
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workers firms

expected total
output

O = 2
min∑
i=1

µSi:n · ηi:k

expected total
investments

Tw =
min∑
i=1

i
(
ηi:k − ηi+1:k

)
µSi+1:n Tf =

min∑
i=1

i
(
µSi:n − µSi+1:n

)
ηi+1:k

expected welfare of
workers/firms

Ww =
min∑
i=1

i ·
(
µSi:n − µSi+1:n

)
ηi:k Wf =

min∑
i=1

i ·
(
ηi:k − ηi+1:k

)
µSi:n

expected aggregate
welfare

W =
min∑
i=1

i ·
(
2µSi:nηi:k − µSi+1:nηi:k − µSi:nηi+1:k

)

Table 2: Formulas for expected total output, expected total investments and welfare for workers and firms,
respectively, and expected aggregate welfare, for given prior distributions, information technology S, and
market sizes, n, k. Here, min := min{k, n}.

but he imposes a negative externality on all workers receiving a lower signal realization. Each

of those workers would be assigned to a higher match-partner if type i were not present. It

follows that the expected investment, ti, of the ith type is:

ti =

min{k, n}∑
j=i

µj+1:n · (ηj:k − ηj+1:k). (1)

Summing up over all i we obtain the formula for expected total investments of workers,

Tw =

min{k, n}∑
i=1

i
(
ηi:k − ηi+1:k

)
µSi+1:n.

In the separating equilibrium of Theorem 1 the assignment in the matching stage is positive

assortative with respect to agents (posterior) types. It is easy to see that the resulting

expected total match output is O = 2
min{k, n}∑

i=1

µSi:n · ηi:k. Expected total welfare of workers is

Ww = 1
2
O − Tw and the formulas for equilibrium expected total investments and welfare of

firms are derived in a similar fashion. Table 2 provides a summary of the formulas.

4 Precision of Information Technologies

We now introduce a novel criterion, which we call single-crossing precision, to compare signals

in terms of their informational content. In Section 5, we apply this concept to discuss the
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effects of a higher level of information of workers on total match output, total investments,

and welfare.

Given our assumption that signals are monotone, the natural informativeness criterion

to use is the concept of effectiveness introduced by Lehmann (1988) – Persico (2000) calls

this concept accuracy. The basic idea behind this concept is that, for a more accurate signal

the conditional distributions that characterize the signal are more dependent on the state

than for a less accurate signal.14 Mizuno (2006) shows that for a more accurate signal the

resulting distribution of posterior estimates is more dispersed.

As Ganuza and Penalva (2010), we use this observation to define a novel precision criterion

in terms of properties of the resulting distribution of posterior estimates.15 It is based on

the following insight: for a completely random signal nothing can be inferred from the signal

realization and the resulting posterior estimate is always the ex-ante mean. For a more

informative signal, the resulting distribution of posterior estimates will be more responsive

to the signal realization and thus result in a more variable distribution of posterior estimates.

The information criterion that we use requires that a more precise signal leads to a

more dispersed distribution of posterior estimates in terms of a mean-preserving spread.

Moreover, for signals ordered in terms of single-crossing precision, we require single-crossing

of the quantile functions.

Definition 1. For a given prior FX and signals S1, S2, let H−11 and H−12 be the quantile

functions of E [X|S1] and E [X|S2]. Say that signal S2 is more single-crossing precise than

S1, denoted S2%∗ S1, if
H−12 (u)

H−11 (u)
is increasing in u ∈ (0, 1) .

We say that agents have a higher information level if the private signal realizations that

agents receive in the information stage originate from a more (single-crossing) precise signal.

Single-crossing precision implies that the distribution of posterior estimates resulting from

the more precise signal crosses the one resulting from the less precise signal only once and

from above. Our criterion is therefore slightly more restrictive than the ordering induced by

accuracy.16 However, many commonly used information structures are ordered in terms of

14Signal S1 is more effective than signal S2 if GS1

(
G−1S2

(s|x)|x
)

is increasing in x. Effectiveness applies
to monotone decision problems and requires less restrictive conditions than sufficiency (Blackwell, 1951) to
compare signals in terms of their informativeness.

15Our concept is slightly stronger than the concept of integral precision in Ganuza and Penalva (2010).
Their concept of supermodular precision and our concept of single-crossing precision are not nested – a
formal discussion is provided in Appendix C.

16A more accurate signal results in a mean-preserving spread of the distribution of posterior estimates, a
property that does not exclude multiple crossings. Signals which are characterized by more or less fine parti-
tions of the state space are typically not ordered in terms of single-crossing precision, since the distributions
of posterior estimates may cross multiple times.
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Figure 1: Relation of the quantile and distribution functions of posterior estimates for signals ordered in
terms of single-crossing precision.

single-crossing precision, among them those in Example 1 and Example 2. For truth-or-noise

technologies, signal Sα is more precise than Sβ if and only if α ≥ β. For normal experiments

a signal with less noise is more precise.

Increasing the precision of a signal in terms of single-crossing precision has two main im-

plications. First, it results in a more dispersed distribution of posterior estimates in terms of

a mean-preserving spread. Second, if the distributions of posterior estimates exhibit different

levels of skewness, then the more precise signal results in a more left-skewed distribution of

posterior estimates.17 Figure 1 and Figure 2 illustrate properties of the distribution, density

and quantile functions of the posterior estimates from signals that are ordered in terms of

single-crossing precision.

In order to establish our results, we use the quantile function representation for order

statistics, which establishes a close link between the properties of the quantile functions and

the vector of expected order-statistics.18 For signals ordered in terms of single-crossing preci-

sion the vectors of the expected order statistics of the posterior types satisfy a “single-crossing

condition”. Switching to a more precise information technology results in an increase of the

expected value of the highest order statistics of posterior types, whereas the expected values

of lower order statistics will decrease. The following lemma formally states this property.

17This feature of our information order is in line with the well-documented observation in the empirical
finance literature that many asset return distributions exhibit negative skewness (e.g. Beedles, 1979; Alles
and Kling, 1994, and subsequent papers). This property is often attributed to standard practices adopted to
release information. Companies tend to release good news immediately (more frequently), whereas bad news
are released in clumps. This was first pointed out in Damodaran (1985) and recently discussed in Acharya
et al. (2011).

18See Arnold et al. (1992).
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(a) Densities – the symmetric case.
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(b) Densities – skewed distributions.

Figure 2: Density functions of posterior estimates for signals ordered in terms of single-crossing precision.
(a) illustrates the case for symmetric functions, (b) the case with different skewness.

Lemma 1. If information technology S2 is more single-crossing precise than S1, then for

all n ∈ N
µS1
i:n

µS2
i:n

is increasing in i.

5 The Comparative Statics Effects of Higher Precision

How does a change in the information level of workers affect equilibrium behavior of agents

and the resulting match outcome? In this section, we address this question and characterize

the effects on expected total output, investments and welfare.

In our model workers are a priori uncertain about their own types, and the outcome

depends on the private signals that they receive in the information stage. Thus, from the

ex-ante perspective, the matching mechanism yields a lottery over all possible matchings

of workers to firms. In the two extreme cases, workers either receive no information about

their own types, which results in random matching, or they observe a perfectly informative

signal and are matched positive assortatively in equilibrium. Since signals are monotone

(Assumption 1), workers with high types are more likely to receive a high signal in the

information stage than low-type workers. Consequently, if the information level of workers

increases, then the probability that workers with high types are matched with firms of a

similar ranking increases. This results in a higher expected match output for pairs of high-

ranking agents, but may result in a decrease of expected match output for lower-ranked

pairs.19

19This result holds if E [X|S2] is a mean-preserving spread of E [X|S1]. That is, is suffices to require that
signals are ordered in terms of integral precision (Ganuza and Penalva, 2010).
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Proposition 1. Let signal S2 be more precise than signal S1. Then, expected total match

output is increasing in signal precision.

The result establishes that, at the aggregate level, a higher information level of workers

always results in an increase in total match output. This is intuitive. A higher information

level of workers allows on average for a better matching.

The effect on expected investments and welfare of workers is harder to characterize. If

workers obtain more precise information, the resulting distribution of posterior types is more

dispersed. The expected value of the low posterior-type workers decreases. Consequently, for

these workers the (marginal) benefit in match output from being matched with a firm of

higher ranking reduces and thus also the expected externalities imposed on them by other

workers.20 For high-type workers the effect is reversed and externalities imposed on them are

increasing.

At the aggregate level, it is not clear a priori, which of these effects dominates, and

some of the following results will depend on the sizes of the two sides of the market, or

distributional properties of firms’ types.21

Theorem 2 (Workers’ expected total investments and welfare). Let signals be ordered in

terms of single-crossing precision. Then:

(i) Expected total investments:

a) There exists some n̂ ≥ k such that for all n ≥ n̂, expected total investments of

workers are increasing in information precision.

b) If n ≤ k, and the distribution of firms’ types, FY , has an increasing hazard rate,

then expected total investments of workers are decreasing in information precision.

(ii) Workers’ expected welfare is increasing in information precision.

The result shows that, if workers are on the long side of the market and the number of

workers is sufficiently large, then a more single-crossing precise signal always results in an

increase of workers’ expected total investments. In this case, only the high-ranked workers

are matched in equilibrium. The expected types of these workers are increasing in the level of

information and so are the externalities imposed on them. If the ratio of workers to firms is

large enough only the effect on high-type workers matter. Consequently, the expected total

20To be precise, the expected externality imposed on the low posterior-type workers is non-increasing,
since these workers may not be matched in equilibrium. Workers with zero investments do not adjust their
investments.

21The results of Theorem 2 incorporate as special cases both, the comparative statics results on hetero-
geneity of Hoppe et al. (2009) and the results of Ganuza and Penalva (2010) on the expected valuation and
the informational rent of the winning bidder, and the seller’s expected revenue. More details on this are
provided in Section 7.
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investments, which capture the externalities workers impose on each other, will increase.

Competition among workers may even be so strong that the expected investment of each

individual worker is nondecreasing in information.22

By contrast, if there are more firms than workers, all workers are matched in equilibrium.

We know that if the information level of workers increases, then the externalities imposed on

the low-type workers decrease. If this effect drives the effect on expected total investments

of workers, then they decrease as the information level of workers increases. This is the

case if the distribution of firms’ types has an increasing hazard rate, which implies that

the externalities imposed on low-type workers have a higher impact on aggregate expected

investments than those imposed on high-type workers (cf. Lemma 2 and Table 2).23

If workers hold private information, workers’ expected welfare Ww captures the informa-

tional rents of workers. In the model that we consider, the matching mechanism is fixed.

Hence, as expected, for a higher information level of workers, more information rent is left

to the workers and the expected welfare of workers is increasing.

The next result establishes the effects of a higher information level of workers for the

other side of the market, that is, on firms’ expected total investments and welfare.

Theorem 3 (Firms’ expected total investments and welfare). Let signal S2 be more single-

crossing precise than signal S1.

(i) Expected total investments of firms are increasing in information precision.

(ii) Firms’ expected welfare:

a) There exists some n̂ > k such that firms’ expected welfare is increasing in infor-

mation precision for all n ≥ n̂.

b) If n ≤ k and FY has an increasing hazard rate, then firms’ expected welfare is

decreasing in information precision.

c) If FY has a decreasing hazard rate, firms’ expected welfare is always increasing in

information precision.

If workers have a higher information level, firms face a sample of potential match partners

with a more heterogeneous distribution of posterior types. Consequently, the expected differ-

ence of the match outputs from being paired with one of two workers whose ranking differs

only by one increases. Competition among firms increases, which results in firms increasing

their expected investments. This is also true at the individual level – every firm will increase

its expected investment.

22This result is easily established by combining Lemma 4 with (1).
23FY has an increasing hazard rate if fY (y)

1−FY (y) is increasing in y. This property is a common assumption in

mechanism design and satisfied by a large class of distribution functions, including the uniform, normal, and
exponential distribution. For a detailed discussion see Bagnoli and Bergstrom (2005) and Ewerhart (2013).
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Among the firms that are matched in equilibrium, the match output of high ranked firms

is increasing in the information level of workers. For lower ranked firms it will typically be

decreasing, unless there is a much larger number of workers than firms. Thus, lower ranked

firms will be worse off if workers’ hold more precise information whereas high ranked firms

may profit. The effect on expected welfare of firms depends on which of these effects is dom-

inant, and hinges on the distribution of firms’ types and the sizes of the two sides of the

market. If firms constitute the long side of the market and their distribution of types has

an increasing failure rate, firms’ expected welfare decreases the information level of workers

increases. In this case, the increased competition among firms will eat up all of the additional

match surplus made possible by the higher information level of workers.

Is it always welfare improving to provide workers with additional and hence more precise

information? The answer is not obvious. For a higher information level of workers, there

is a trade-off between a higher expected total match output and a possibly increase in

(wasteful) investments. From the previous analysis we know that providing more information

to workers always increases workers’ expected welfare whereas firms’ expected welfare may

be decreasing. A higher information level of workers has a more direct effect on expected

welfare of workers than on that of firms. This property may suggest that the first effect

is stronger, which would imply that expected aggregate welfare is always increasing in the

information level of workers.

However, this intuition is not correct. The following example shows that increasing the

information level of workers may result in a decrease of aggregate welfare.

Example 3 (Expected aggregate welfare).

Consider a matching market with three workers and three firms, n = k = 3. Workers’

types are standard uniformly distributed, Xi
iid∼ U [0, 1], and the information technology is

a truth-or-noise technology Sα with precision level α. In this setting, the posterior types

of workers are uniformly distributed on
[
1
2
(1− α), 1

2
(1 + α)

]
, and the corresponding vector

of posterior mean-order statistics is (µα1:3, µ
α
2:3, µ

α
3:3) =

(
1
2

+ 1
4
α, 1

2
, 1
2
− 1

4
α
)
. From an ex-ante

perspective, the expected posterior type of the highest worker is 1
2

+ 1
4
α. Suppose firms’ types

are represented by the vector (η1:3, η2:3, η3:3) =
(
2
3
, 1
2
, 1
3

)
. Table 3 illustrates expected output,

expected total investments and welfare of workers and firms for the given specifications.

In this setting, as the information level α increases, the externalities imposed on the

lowest-ranked worker, 2 ·
(
1
2
− 1

4
α
)
· 1
6
, decrease whereas those imposed on the middle-ranked

worker are constant. Consequently, workers’ expected total investments, Tw = 1
4
− 1

12
α, is

decreasing in the information level α. Moreover, as the information level of workers increases,

welfare of firms, Wf = 3
4
− 5

24
α, decreases. In total, we obtain that the negative effect on
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O = 3
2

+ 1
12
α

Tw = 1
4
− 1

12
α Tf = 7

24
α

Ww = 1
2

+ 1
6
α Wf = 3

4
− 5

24
α

W = 5
4
− 1

24
α

Table 3: Expected total output, investments and welfare for workers and firms, for n = k = 3, Xi
iid∼ U [0, 1],

firms’ types (η1:3, η2:3, η3:3) =
(
2
3 ,

1
2 ,

1
3

)
, and a truth-or-noise technology of precision level α.

firms is stronger than the positive effect on workers:

∂W

∂α
=
∂o

∂α
+
∂Wf

∂α
− ∂Tw

∂α

=
1

12
− 5

24
+

1

12
= − 1

24
< 0.

A notable feature of this example is, that even though workers’ expected total investments

are decreasing in the level of information, the negative effect on firms’ welfare is so strong

that expected aggregate welfare is decreasing. 4

Remark This observation that increasing the information level of agents may not be

welfare enhancing complements and strengthens existing results, which show that random

matching may be welfare superior to assortative matching because it allows to avoid wasteful

signaling or screening costs.24 Random matching requires that neither side adopts separating

strategies. In many settings this is unlikely to be true, be it because there is some informa-

tion about a ranking of agents available in the market, or because it is simply infeasible.25

In this case, our example shows that for a higher information level of workers, the increased

competition among firms may be so strong that the increased investments of firms may eat

up all gains from increased match output and decreased wasteful investments of workers. As

a result, overall expected welfare may be decreasing in the information level of workers.

To better understand the informational effects on aggregate welfare, it helps to decom-

pose aggregate welfare as W = o + (Wf − Tw); the sum of total match output of workers,

o = 1
2
O, and aggregate externalities imposed by workers on other agents, Wf − Tw. Here,

Tw captures the aggregate externalities workers impose on each other, whereas Wf captures

the aggregate externalities imposed on firms, i.e., agents on the other side of the market.

24See for example Hoppe et al. (2009), Condorelli (2012), and Chakravarty and Kaplan (2013).
25Of course, a way to implement the random matching is to ignore any investments of agents. However, if

agents have some private information this is not a stable matching.
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Thus, the effect of a higher level of information of workers on total welfare consists of the

effect on workers’ match output and the change in the aggregate externalities workers impose

on all agents. By Proposition 1 we know that total match output is increasing in workers’

information level whereas Wf − Tw may be decreasing. In this case the effect on aggregate

welfare depends on which of the two effects is dominant.

We conclude this section by identifying conditions, which each individually guarantee

that aggregate welfare is increasing in workers’ information level.

Theorem 4. Aggregate welfare is increasing in information precision if one of the following

conditions is satisfied:

(i) FY has a decreasing hazard rate, or

(ii) n < k and fY is monotone decreasing.26

6 Optimal Level of Precision

We now take the analysis one step further and assume that, in the information stage, the

precision of the information technologies is not exogenously given, but can be chosen before

the information stage. We call this game the precision and matching game.

In a precision and matching game, first, workers’ information technology Sα is chosen

from a set S of feasible information technologies, either collectively by one group of agents,

or by a social planner. The information technology Sα is then implemented and the rest of

the game proceeds as described in Section 2. In the information stage, every worker obtains

a private signal from Sα, agents then update their beliefs according to Bayes’ rule before

they enter the matching stage. The timing in the precision and matching game is illustrated

in Figure 3.

Information technology
for workers, Sα ∈ S, is
chosen.

Information Stage

Each worker receives
an independent, private
signal realization from
Sα.

Matching Stage

Agents choose (wasteful)
investments to compete
for match partners.

Figure 3: Timing in the precision and matching game.

26Every absolute continuous random variable with a decreasing hazard rate has a decreasing density
function. But there exist also distributions with an increasing hazard rate and monotone decreasing density
functions (cf. Bagnoli and Bergstrom, 2005).

20



We characterize the socially optimal information level, αso, which maximizes aggregate

welfare of all agents in the market, and compare it to the worker-optimal information level,

αao, which maximizes workers’ welfare. This is the optimal information level in a one-sided

market in which only workers are active agents. It is also the information level that a designer

who only cares about the well-being of workers would want to implement in a two-sided mar-

ket.27 Focusing on these two information levels allows to isolate the effects which originate

from the two-sidedness of the matching market and are not prevalent in one-sided markets.

If information is costless it is easy to see from our previous discussion that the worker-

optimal information level is to be perfectly informed (cf. Theorem 2). However, this is not

necessarily the socially optimal information level since aggregate welfare may be decreasing

in information precision (cf. Example 3). The same is true for the firm-optimal information

level, i.e., the precision of workers’ information which maximizes firms’ welfare. In any case,

if information is costless, the firm-optimal and the socially optimal level of information will

always be extreme, that is, either full information or no information.

Costly Precision

We now consider the case when information is costly. To formally analyze this case, let S be

a set of feasible information technologies which is totally ordered in terms of strict precision.

That is, there exists some A ⊆ [0,∞) such that S = {Sα}α∈A and Sα is more precise than

Sα′ if and only if α > α′. Information technology Sα is characterized by {Gα(·|x)}x∈X . For

ease of presentation, we restrict attention to linear information models, with E [X|S] =

αS + (1 − α)E [X], α ∈ [0, 1]. The natural indexation in this case is to denote by Sα the

information technology that results in E [X|S] = αS + (1− α)E [X].

The following condition on the distribution of signals guarantees that for all precision

levels α ∈ (0, 1), the distribution and density functions of the posterior estimates, Hα and

hα, are continuously differentiable in the precision level α:

Assumption 2 (Differentiable Signals).

The marginal distribution of signal realizations G is twice continuously differentiable in s.

We assume that information costs have a ‘pay per signal’ structure. For information

technology Sα ∈ S of precision α ∈ [0, 1] every worker who receives a signal from Sα has to

27This applies to setting in which there is a lobby group representing agents on one side of the market.
Examples include the parent empowerment movement or labor unions. It should be noted that workers
would also choose αao if they could coordinate on a common information level. e.g. by collectively choosing
an information technology.
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pay c(α) ∈ R+. Precision costs are increasing in α and capture for example investments in

time or resources to generate or collect information. The precision-cost-function c : [0, 1]→
[0,∞) is increasing and continuously differentiable with c(0) = 0 and c′(0) = 0. Since every

worker obtains exactly one signal, total costs for information technology Sα are C(α) :=

nc(α).

Given Assumption 2 expected welfare of workers and expected aggregate welfare are

continuously differentiable in the level of information of workers (cf. Lemma 6). In order to

identify and compare the worker-optimal and socially optimal information levels, we impose

the following single-crossing conditions.

Assumption 3 (Single-crossing).

(i) ∂c/∂α
∂Ww/∂α

is strictly increasing in α ∈ (0, 1) .

(ii) ∂c/∂α
∂W/∂α

is strictly increasing in α ∈ (0, 1) whenever ∂W
∂α

> 0.

For S being the set of truth-or-noise technologies and Xi
iid∼ U [0, 1], Assumption 3 is

satisfied for convex precision costs.

We now characterize the relation between the worker-optimal and the socially optimal

information level if information is costly.

Theorem 5. In a precision and matching game, suppose Assumption 1–3 are satisfied.

(i) The socially optimal information level of workers is higher than the worker-optimal

level, αwo ≤ αso, if

a) workers constitute the long side of the market and n is sufficiently large, or

b) the distribution of firms’ types FY has a decreasing hazard rate.

(ii) The socially optimal information level of workers is lower than the worker-optimal

level, αso ≤ αwo, if workers constitute the short side of the market and the distribution

of firms’ types has an increasing hazard rate.

It is not surprising that in a precision and matching game the worker-optimal and socially

optimal levels of precision do not coincide. Information of workers imposes an externality on

firms. For a higher information level a better allocation can be achieved which increases total

match output. However, more information also leads to more differentiation among workers,

which increases competition among firms. This results in higher expected investments of

firms. The relation between the worker-optimal and the socially optimal level of information

depends on whether the overall effect of a higher information level of workers on firms is

positive or negative.

Theorem 5 illustrates that in a relatively balanced market, with groups of similar sizes

on each side of the market, the relation between the worker-optimal and socially optimal
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information level depends on the distribution of the informed agents’ types. However, the

socially optimal information level is always higher than the worker optimal information level,

if the group of uniformed agents constitutes the long side of the market and is sufficiently

large.

7 Applications

In this section we discuss implications of the results established in Section 5 and Section 6

for various market design settings, in particular auctions, contests and matching markets. In

each of the applications we highlight certain features of our results and contributions.

7.1 Auctions

The standard private values auction setting is captured as a special case by our model. It

corresponds to the case in which workers represent the bidders of the auction, and there

is only one firm of a given, commonly known type, representing for example the auction

platform or the object to be sold. The seller is a third party who collects the bids. As

summarized in Table 4, the expected valuation of the winning bidder is 1
2
· O, his expected

information rent is Ww, and Tw represents the seller’s expected revenue.

auctions exp. valuation of
the winning bidder

exp. revenue of the
seller

exp. information rent
of the winning bidder

general model 1
2
O = µS1:n Tw = µS2:n Ww = µS1:n − µS2:n

Table 4: Translation of our results to the standard auction setting with n bidders.
Reminder: µS

i:n denotes the ith mean order statistics of the posterior distribution of bidders’ types.

Translating our results of Section 5 to the auction setting yields the following insights:

Disclosing information to bidders increases the expected valuation of the winning bidder

(Proposition 1) as well as his expected information rent (Theorem 2).28 Moreover, the seller’s

expected revenue increases, if there are sufficiently many bidders (Theorem 2). If information

disclosure is costly, the revenue maximizing level is below the efficient level (Theorem 5).

These observations correspond to the results established in Ganuza and Penalva (2010) on

information disclosure in auctions. Our results therefore include their results on information

disclosure in auctions as a special case.

28For the result on expected information rents of the winning bidder a version of strong precision is needed.
The result follows for both criteria of strong precision, the one used in this paper as well as the concept of
supermodular precision adopted by Ganuza and Penalva (2010).
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The methods from statistics that we adopt in this paper, provide an alternative and

shorter way to prove these results. Using these statistical methods allows furthermore to

strengthen the results of Ganuza and Penalva (2010). For example, the result on the expected

informational rent of the winning bidder can be strengthened to the statement that providing

more information to bidders increases the expected informational rent of the winning bidder

in terms of first-order stochastic dominance and not only in expectation.29

The statistical methods used in this paper are powerful and should be explored further

because they hold the promise to yield interesting results and insights in mechanism design

settings with endogenous information. Let us support this point by providing a small, new

result that we can establish by exploring these methods further.

Let S = {Sα}α∈A be a ordered set of information technologies such that Sα′ is more

precise than Sα, if α′ > α. Say that the information level of bidder i is αi, if he receives a

signal from information technology Sαi
in the information stage. Bidders may receive signals

from different information technologies, that is, of different precision, resulting in a profile

of information levels of bidders (α1, . . . , αn). We say that the information level of bidders

weakly increases if the information level of at least one bidder strictly increases, and the

information levels of all other bidders are non-decreasing.

Proposition 2. In a private values auctions setting consider any auction format that im-

plements the efficient allocation. For any weak increase in the information levels of bidders,

the expected value of the winning bidder increases.

To our knowledge, this generalization of the results on information disclosure in auctions

is new to the literature. It establishes that any weak increase in the information level of

bidders will increase the expected efficiency of the allocation of the auction. For this re-

sult, the additional information provided to, or processed by, the individual bidders may be

heterogeneous, which is natural feature in many situations.

Consider for example a seller who publicly discloses information that is relevant for bid-

ders to learn about their valuation for the object for sale. Typically, the level of information

that individual bidders extract from the publicly available data differs across bidders. Propo-

sition 2 establishes that the effect on the expected valuation of the winning bidder does not

depend on this detail. Providing more information will always increase the expected valuation

of the winning bidder.

29The result is a simple corollary to theorem 3.B.31 in Shaked and Shanthikumar (2007). This was pointed
out in a footnote in Ganuza and Penalva (2010) but the fact that this alternative proof yields a stronger
result was mentioned only recently in Shaked et al. (2012).
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7.2 Two-sided Matching Markets

When applied to matching markets, our results provide a first theoretical study of the effects

of private information and the information level of market participants on the equilibrium

outcome in matching markets.

As we have discussed in Section 4, a higher information level of workers leads to more

differentiation among workers in the matching game. This effect allows for a better allocation:

high-abilitiy workers are more likely to be matched to a firm of similar ranking, which results

in an increase of total match output (Proposition 1).30

Moreover, a higher information level and the resulting higher differentiation among work-

ers, also raises the stakes for the firms of being matched to a better or worse partner. This

results in an increase of firms’ expected signaling investments (Theorem 3).

The effect on workers’ expected signaling investments is less clear-cut and depends on

certain features of the market (Theorem 2). For a higher information level of workers, the

(marginal) benefit from obtaining a better match increases for high-ranked workers, whereas

it is decreasing for low-ranked workers. This results in high-ranked workers increasing their

investments in signaling whereas lower ranked workers may invest less. If workers constitute

the long side of the market, only high-ranked workers are matched in equilibrium and workers’

expected total investments are increasing. If there are more firms than workers, the effect

may be reveres.

These results illustrate, that in finite matching markets, some of the effects of a higher

information level of market participants depend on whether information is disclosed to agents

on the short or the long side of the market. This new insight is made possible because our

comparative statics result in Section 5 apply for arbitrary finite group sizes on the two sides

of the market.31 This observation highlights that it is important to study matching market

models with a finite number of agents and not restrict attention solely on the case with a

continuum of agents on both sides of the market.32

An important insight from our analysis is the following: In a two-sided matching market

30This effect is observed in empirical studies. For example, in their study Hoxby and Turner (2013) provide
a subgroup of high-school seniors with additional information about their college opportunities and find
that, for students who received information, the probability to enroll in a college that matches their abilities
increases significantly.

31This also allows us to consider information disclosure in auctions as a special case of our results. Moreover,
the projection of our results to the model of Hoppe et al. (2009) generalizes their results on comparative
statics effects of group heterogeneity (they only consider the case n = k).

32Most models which discuss comparative static settings study models with a continuum of agents on each
side of the market. Considering a continuum of agents is often a reasonable and very useful assumption,
since it avoids the technicalities of having to deal with order statistics. However, the point we want to make
here is that it is also important to study the model with finite sets of agents.
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in which both sides of the market invest in wasteful signaling to compete for match partners,

the trade-off between a better allocation and a potential increase in wasteful signaling in-

vestments may result in a decrease of expected aggregate welfare when the information level

of market participants increases (Example 3). This feature is specific to two-sided markets.

Welfare of agents on the side of the market receiving more information is always increasing

in expectation (Theorem 2). Consequently, in settings in which only one side of the market

are active agents, providing these agents with additional information would unambiguously

increase expected welfare. By contrast, in a two-sided matching market, for an increase in

the information level of agents, the amplified competition among agents within their groups

and the resulting increase in signaling investments may eat up all additional match surplus.

What can we learn from this? Our results indicate that in a two-sided matching market

more information is not necessarily better if the objective is to maximize overall expected

welfare. However, there are often different or additional objectives like equalizing the infor-

mation level across agents, fairness considerations or incentivizing schools or colleges to invest

in their quality. Our results yield insights into the last aspect. If parents are provided with

more information about school choices, the highest-ranked schools profit most from informed

choices of parents, whereas low-ranked schools may be worse off (Theorem 3).33 This may

serve as a formal rationale for the claim often raised by the parent empowerment movement,

that providing parents with more information results in them making more informed choices,

which – in the long run – will increase school quality. From this perspective, it may even be

good to let a lobby for one side of the market, determine the level of information of market

participants, even though they do not fully interalize the costs and benefits from additional

information and thus will not choose the socially optimal information level.34 Theorem 5

suggest that, if the uninformed agents – the workers – constitute the long side of the market,

the worker-optimal level of information for this side of the market is higher than the socially

optimal level. Given that only high-quality firms profit from the informed choices by workers,

this incentivizes firms to compete for the highest-rank among their peers which may induce

them to invest in quality-enhancing policies.

33This claim still remains true if schools are not considered to be active agents and therefore do not invest
in signaling about their types.

34Distributing information among parents, providing more or less detailed information on websites, or
determining the precision level of standardized test like the SAT are examples of technologies that can serve
to influence the level of information of market participants.

26



7.3 Contests

Our model can also includes a rank-order tournament or contest setting as a special case. To

see this, interpret agents on one side of the market, say the firms, as representing the prizes

in a promotion tournament, with commonly known values η1:k ≥ · · · ≥ ηk:k. This side of the

market is passive. Workers represent the participants of the contest. Workers’ types reflect

their abilities, and their investments correspond to the effort, which they exert. With this

interpretation, workers’ investments are not wasteful but they are collected by a third party

– the company or organization running the promotion tournament.

In promotion tournaments there are two natural objectives: To promote the best workers

and to maximize workers’ efforts. Translating our results from Section 5 and Section 6 to

the promotion contest, we obtain the following predictions. More information of competitors

increases the probability to promote the best workers (Proposition 1). If the ratio of workers

to prizes is sufficiently large, then workers’ expected overall effort is increasing in their

information level. However, if this ratio is too small, providing information to the workers

may not be effort enhancing – not even on an aggregate level (Theorem 2).

There is a second option to project our model to a contest, interpreting firms as contes-

tants and the mean-order statistics of posterior types of workers, µS1:n ≥ · · · ≥ µSn:n, as prizes.

In this case, the translation of Theorem 3 yields the well-known observation that increasing

the prize-spread in contests results in an increase in workers’ effort.35

A typical question in the contest literature is how to design an optimal contest in order

to maximize workers’ effort. Our results indicate that information management through

feedback systems may serve as an useful element of contest design. Let us provide some

details for this insight. The standard design element that is usually considered in the contest

literature are prizes. The number and distribution of prizes in a contest affect workers’ effort,

and can therefore be used to design an optimal prize-structure that maximizes workers’

efforts. However, in some organizations it may not be feasible to implement the optimal

prize-structure suggested by theoretical models, because there are certain constraints on

the number or distribution of prizes. For example, in promotion tournaments the prize-

structure is determined by the wage schedule and the number of positions on each level of

the organization. In situations in which the optimal prize-structure cannot be implemented,

a designer could influence workers’ effort by implementing a feedback systems to manipulate

the information level available to workers. We refer to this design element as information

management.

35See for example Lazear and Rosen (1981), Moldovanu et al. (2007), Connelly et al. (2014) and references
therein – also of empirical studies supporting these theoretical predictions.
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Our results shed light on properties of optimal feedback systems in contests. They sug-

gest that we should observe different feedback systems depending on the ratio of workers

and prizes in a contest. In organizations with steeper hierarchies or an up-or-out system, we

should expect stronger feedback systems to be in action, for example a high frequency of

periodical performance reports. By contrast, for organizations with flat hierarchies or promo-

tion by seniority practices, our results predict less sophisticated feedback structures. These

predictions seem to be in line with common practices. For example, large consulting firms

with an up-or-out policy are known to have a very rigorous feedback structure.

8 Related literature

This paper is related to various strands of literature. It is connected to the vast matching

literature that emerged from the seminal papers by Gale and Shapley (1962), Shapley and

Shubik (1971) and Becker (1973). Most of the theoretical analysis of matching markets

focuses on complete information models in which agents’ preferences, types, and match values

are common knowledge. There is an emerging literature studying incomplete information

matching models and issues of screening and signaling which arise therein. See for example

Hoppe et al. (2009), Hopkins (2012), and Bilancini and Boncinelli (2013). Our second-stage

game is based on the models analyzed in Hoppe et al. (2009) and Hopkins (2012). They

study two-sided matching markets, in which agents on one or both sides of the market

have private information about their characteristics. Agents invest in costly signaling à la

Spence (1973) to compete for match partners. As Hoppe et al. (2009) we consider a small

market with a finite number of agents, whereas Hopkins (2012) studies a model with a

continuum of agents. In a related paper by Bilancini and Boncinelli (2013), agents on both

sides of the market have private information about their skills and can choose whether or

not to disclose this information. For one side of the market information is not verifiable and

disclosing information yields certification costs. All of the aforementioned papers consider

matching markets in which agents have private information about their characteristics, and

analyze the costs and benefits from disclosing this information. By contrast, our focus is on

disclosing information to agents about their types. We study how different information levels

of participants in (matching) markets affect the resulting equilibrium properties and welfare.

Related questions are addressed in the literature on information disclosure in auctions.

Ganuza and Penalva (2010) discuss the effects of different information levels of buyers in a

second-price auction, whereas Bergemann and Pesendorfer (2007), Esö and Szentes (2007),

and Ganuza and Penalva (2019) adopt a mechanism design perspective. In a private values

environment, these papers discuss the revenue maximizing information structure and sell-
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ing mechanism for the seller. Similar to Ganuza and Penalva (2010) we focus on a given

mechanism and study how different information levels affect the equilibrium.

Our analysis extends the discussion of information disclosure in auctions to two-sided

matching markets and can also be applied to contests and rank-order tournaments. A recent

survey of the contest literature is provided by Connelly et al. (2014). The focus of most of

these papers, for example Moldovanu and Sela (2001, 2006) is on optimal contest design,

that is, on the optimal portfolio of prizes or how to split the contestants in subgroups to

achieve the designer’s objective. There is a growing literature studying the role of feedback

and optimal feedback systems in contests. Examples include Aoyagi (2010), Goltsman and

Mukherjee (2011), Hansen (2013), and Ederer (2010). All of these models restrict attention to

the two-agent case and most of them only consider full or no disclosure policies. By contrast,

we allow for arbitrary finite numbers of prizes and workers. A new insight that can be gained

from our results is that the optimal feedback policy depends on the ratio of workers to prizes

(see discussion in Subsection 7.3).

This paper also ties to the literature that identifies and explores connections between

auctions and matching markets in order to establish new results. See for example Demange

and Gale (1985) and Hatfield and Milgrom (2005). The matching market that we study,

can be considered as the combination of two multi-object auctions with two sides of active

agents (cf. discussion in Section 3). To establish our results we use this connection between

matching markets and auctions and identify a relation between the statistical methods used

by Hoppe et al. (2009) and the type of precision criterion introduced by Ganuza and Penalva

(2010).36

Our paper also relates to the growing literature on pre-match investments in matching

tournaments. Examples include Cole et al. (2001), Peters and Siow (2002), and Mailath et al.

(2013) and Dizdar (2018). Pre-match investments generate first-order effects on agents’ types.

Similarly, Hopkins (2012) studies such first-order effects, interpreting shifts in agents’ type

distribution in terms of first-order stochastic dominance as a more competitive environment.

By contrast, in our analysis, investments in information yield second-order effects. A higher

level of information leads to a more dispersed distribution of workers’ posterior types in the

second-stage matching game.

36Methodologically, a related paper is Chi (2015), who uses statistical methods to study informational
effects in Bayesian decision problems.
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9 Conclusion

In this paper we studied the impact of the level of information available to market partici-

pants in a two-sided matching market. We illustrated that for a higher information level of

workers there is a trade-off between the increased match surplus from the better allocation,

and the welfare reducing effects of increased competition among agents. It was shown that

the increased competition among agents may be so strong that it eats up all additional match

surplus. In this case, a higher information level of market participant reduces welfare. Our

results not only provide a first study of information disclosure in matching markets, but can

also be applied beyond the matching setting. We discussed implications of our results for

auctions and contests.

A notable distinction between the effects of information disclosure in auctions and match-

ing markets is the following: In an auction, a seller faces a trade-off between efficiency and

having to leave information rents to the buyers. In a matching market information disclosure

yields a trade-off between allocative efficiency and the welfare-reducing effects of increased

competition among agents on both sides of the market.

The setup of the model and the discussion of applications to different market design

settings illustrated how these settings are connected. We used these insights in this paper to

identify a relation between the discussions in Hoppe et al. (2009) and Ganuza and Penalva

(2010). Establishing a link between the methods adopted in these papers provided us with a

new approach to study the impact of information disclosure in two-sided matching markets

and related applications. We believe that the connections that we have identified between

the different models and concepts will prove to be useful in future research, in particular to

study mechanism design problems with endogenous information of agents.

Appendix

A Technical Prerequisites

In this section we present the main techniques used to prove our results. The methods stem

from statistics and reliability theory. Shaked and Shanthikumar (2007) provide a compre-

hensive treatment of order statistics whereas Marshall et al. (2011) is a good reference for

the theory of majorization. If not indicated otherwise, all definitions and theorems stated in

this section can be found in these two books.

The single-crossing property of quantile functions that we use in Definition 1 is equivalent

to the distribution of posterior estimates being ordered in terms of the star order (see Shaked

and Shanthikumar (2007), Section 4.B).
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Fact 1. If S2 is more single-crossing precise than S1, then E [X|S2] is greater than E [X|S1]

in the star-order, E [X|S2] ≥∗ E [X|S1].

Notation. X ≤MPS Y , then Y is a mean-preserving spread of X.

X ≤∗ Y , then Y is greater in the star order than X.

Definition 2. Consider two ordered n-dimensional real-valued vectors a = (a1, . . . , an), and

b = (b1, . . . , bn) ∈ Rn, with a1 ≥ · · · ≥ an and b1 ≥ . . . bn. We say that a submajorizes b,

(a �sub b), if
m∑
i=1

ai ≥
m∑
i=1

bi for all m = 1, . . . , n. (2)

If in addition (2) holds with equality for m = n we say that a majorizes b, (a � b).

A function φ : Rn ⊇ A −→ R is Schur-convex (resp. Schur-concave) if, whenever a

majorizes b, a � b, then φ(a) ≥ φ(b) (resp. φ(a) ≤ φ(b)).

If a �sub b then φ(a) ≥ φ(b) for every Schur-convex and increasing function φ.

To proof our results we repeatedly use the following important results from statistics.37

Theorem 6 (Cal and Carcamo 2006). Let X and Y be integrable random variables with

equal means and F (0) = G(0) = 0. Then if X ≤MPS Y , the vector of mean order statistics

of Y , (E [Y1:n] , . . . , E [Yn:n]) majorizes the vector of mean order statistics of X for all n ≥ 1.

That is,

(E [Y1:n] , . . . , E [Yn:n]) � (E [X1:n] , . . . , E [Xn:n]).

Theorem 7 (Barlow and Proschan (1966)). Let X and Y be integrable random variables

with equal means and F (0) = G(0) = 0. Then if X ≤∗ Y this implies X ≤MPS Y , and

moreover

(i) For 1 ≤ r ≤ n:

n∑
i=r

i · (E [Xi:n]− E [Xi+1:n]) ≥
n∑
i=r

i · (E [Yi:n]− E [Yi+1:n]) .

(ii) For a1 ≤ · · · ≤ an:

n∑
i=1

ai · i · (E [Xi:n]− E [Xi+1:n]) ≥
n∑
i=1

ai · i · (E [Yi:n]− E [Yi+1:n]) .

37In their paper Cal and Carcamo (2006) establish this result for random variables ordered in terms of the
convex-order. In our informational setting we always compare random variables with finite and equal means.
In this case the convex order is equivalent to a mean-preserving spread.
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Lemma 2. Let F be a distribution function with F (0) = 0 and an increasing hazard rate

(IHR). Then, for fixed n, the normalized spacings of order statistics i · (Xi:n −Xi+1:n) are

stochastically increasing in i = 1, . . . , n. That is:

(X1:n −X2:n) ≤FOSD 2 · (X2:n −X3:n) ≤FOSD · · · ≤FOSD n · (Xn:n −Xn+1:n) .

If F has a decreasing hazard rate (DHR), then the normalized spacings are stochastically

decreasing in i.

We will also need the following result

Lemma 3. Let X, Y be nonnegative random variables with distribution functions F and G,

respectively, such that F (0) = G(0) = 0. If X ≤∗ Y then

(i) E[Yi:n]
E[Xi:n]

is decreasing in i, and

(ii) E[Yi:n]
E[Xi:n]

is increasing in n.

B Proofs

Proof of Lemma 1. Is a direct corollary of theorem 3.6 in Barlow and Proschan (1966).

Proof of Proposition 1. If S2 % S1 then E [X|S2] ≥MPS E [X|S1] and, by Theorem 6,

(µS2
1:n, . . . , µ

S2
n:n) � (µS1

1:n, . . . , µ
S1
n:n).

For k ≥ n, O =
∑n

i=1 ηi:kµi:n is Schur-convex in the vector of mean order statistics of

workers’ characteristics and consequently if S2 % S1 then O(S2) ≥ O(S1).

For k < n, O =
∑k

i=1 ηi:kµi:n is Schur-convex in the truncated vector of mean-order

statistics of workers’ posterior types, µ|≤k = (µ1:n, . . . , µk:n). A higher information level

of workers only results in (weak) submajorization of the truncated vectors of mean-order

statistics, i.e.

S2 % S1 ⇒ µS2
∣∣
≤k �sub µ

S1
∣∣
≤k .

Since O is increasing and Schur-convex it follows that O(S2) ≥ O(S1).

In order to prove Theorem 2 we first establish a technical Lemma. To state and prove it

we need the following fact.

Fact 2 (Theorem 3.A.5 in Shaked and Shanthikumar 2007). The following conditions are
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each sufficient and necessary for X ≤MPS Y∫ p

0

(
G−1(u)− F−1(u)

)
du ≤ 0 ∀ p ∈ [0, 1] , and (3)∫ 1

p

(
G−1(u)− F−1(u)

)
du ≥ 0 ∀ p ∈ [0, 1] . (4)

Lemma 4. Let X, Y be random variables with continuous differentiable distributions F and

G and equal means, such that X ≤MPS Y . Then, for every k ∈ N there exists some n̂k such

that

E [Xk:n] ≤ E [Yk:n] ∀n ≥ n̂k.

Proof. The methods in this proof are similar to the ideas used to prove theorem 1 in Ganuza

and Penalva (2010).

We can apply the probability integral transformation38 to obtain the following simple formula

for the kth order statistics of X:

E [Xk:n] =
n!

(k − 1)!(n− k)!

∫ 1

0

F−1(u)un−k(1− u)k−1du

Set φ(u) := G−1(u)− F−1(u). Since G and F are continuously differentiable, by the inverse

function theorem F−1 and G−1 are continuous and so is φ.

Suppose that φ(u) 6= 0 on a subset of [0, 1] with nonempty interior.39 Define

L := {u ∈ X [0, 1] : φ(u) < 0} and u := sup{L}. (3) and (4), continuity of φ and the

assumption that φ(u) 6= 0 on a subset of [0, 1] of positive measure imply that u ∈ (0, 1).

We obtain that there exist p1, p2 ∈ (u, 1] such that φ(u) > 0 for all u ∈ [p1, p2]. Set

c1 := minu∈[0,p1]{φ(u)(1 − u)k−1} and c2 := minu∈[p2,1]{φ(u)(1 − u)k−1}. By construction

c1 < 0 and c2 > 0. This yields:

E [Yk:n]− E [Xk:n] =k

(
n

k

)∫ 1

0

(
G−1(u)− F−1(u)

)
un−k(1− u)k−1du

≥ n!

(k − 1)!(n− k + 1)!
pn−k+1
2

[(
p1
p2

)n−k+1

(c1 − c2) + c2

]

Set n̂ := dk− 1 +
ln
(

c2
c2−c1

)
ln
(

p1
p2

) e where dxe denotes the smallest natural number greater or equal

38For every random variable X with continuous c.d.f. F and density f , the transformed random variable
F (X) has a standard uniform distribution, F (X) ∼ U [0, 1]

39The case φ(u) = 0 a.e. is trivial.
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than x. It follows that:

n!

(k − 1)!(n− k + 1)!
pn−k+1
2

[(
p1
p2

)n−k+1

(c1 − c2) + c2

]
≥ 0 ∀ n ≥ n̂

Proof of Theorem 2.

(i) Total expected investments:

a) By Lemma 4 there exists some n̂ > k + 1 such that for every n ≥ n̂, µS2
k+1:n − µ

S1
k+1:n ≥ 0.

Since µS1
k+1:n ≥ 0, it follows that

µS2
k+1:n

µS1
k+1:n

≥ 1 ∀n ≥ n̂.

By Lemma 3,
µ
S2
i:n

µ
S1
i:n

is decreasing in i for every n and it follows that µS2
i:n − µS1

i:n ≥ 0 for all

i ≤ k + 1. We obtain that for all n ≥ n̂ > k:

Tw(S2)− Tw(S1) =

min{n,k}∑
i=1

(ηi:k − ηi+1:k) ·
(
µS2
i+1:n − µ

S1
i+1:n

)
=

k∑
i=1

(ηi:k − ηi+1:k)︸ ︷︷ ︸
>0

·
(
µS2
i+1:n − µ

S1
i+1:n

)︸ ︷︷ ︸
≥0

≥ 0.

b) If FY has an increasing hazard rate, then the normalized spacings i(ηi:k − ηi+1:k) are

stochastically increasing in i (Lemma 2). Set T̃w :=
∑n

i=0 i(ηi:k − ηi+1:k)µi+1:n. Then, for

n ≤ k, Tw = T̃w and T̃w is Schur-concave in the vector of mean order statistics of workers’

characteristics. It follows that Tw is decreasing (non-increasing) in the level of information

of workers.

(ii) Workers’ expected welfare:

Set ai := −ηi:k. Then, applying Theorem 7 (ii) yields

S2%∗ S1 ⇒ Ww(S2) ≥ Ww(S1).

Proof of Theorem 3.

(i) Total expected investments:

Analogous to the proof of Theorem 2 (ii) whereas the case-by-case analysis is now for k ≤ n
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and k > n.

(ii) Firms’ expected welfare:

If FY has a decreasing hazard rate, by Lemma 2 the normalized spacings i(ηi:k − ηi+1:k) are

stochastically decreasing in i. Consequently, Wf is Schur-convex in the vector of conditional

mean order statistics of workers. By Theorem 6 it follows that Wf (S2) ≥ Wf (S1), if S2 is

more precise than S1. The results for the case when FY has an increasing hazard rate, follow

from arguments analogous to those used to prove Theorem 2 (i).

Proof of Theorem 4. W = Ww +Wf . Rearranging terms yields:

W (S) =

min{n,k}∑
i=1

i ·
(
µSi:n − µSi+1:n

)
(ηi:k − ηi+1:k)


︸ ︷︷ ︸

(Wf−Tw)(S)

+

min{n,k}∑
i=1

µSi:nηi:k︸ ︷︷ ︸
0.5O

By Proposition 1 we know that total match output is increasing in precision. Whether ag-

gregate welfare is increasing or decreasing in the level of workers’ information depends on

the effect on Wf −Tw, and, for the case that Wf −Tw is decreasing, on which of these effects

dominates. Throughout the proof, let S2 be more single-crossing precise than S1.

(i) If FY has a decreasing hazard rate, both Ww and Wf are increasing in precision (cf.

Theorem 2 and Theorem 3) and so is W = Ww +Wf .

(ii) Suppose n < k and fY is monotone decreasing. In this case

W =
n∑
i=1

µSi:nηi:k +

[
n∑
i=1

i ·
(
µSi:n − µSi+1:n

)
(ηi:k − ηi+1:k)

]
.

We use the following result which establishes that the spacings of order statistics from random

variables with monotone density functions can be ordered in terms of stochastic dominance.40

Lemma 5. Let Y1, . . . , Yn be independently, identically distributed random variables with

finite support and density function fY . Then,

(i) if fY is monotone increasing (non-decreasing)

Yi:n − Yi+1:n ≤FOSD Yi+1:n − Yi+2:n ∀ i = 1, . . . , n− 2

40This result can be found in Shaked and Shanthikumar (2007).

35



(ii) if fY is monotone decreasing (non-increasing)

Yi:n − Yi+1:n ≥FOSD Yi+1:n − Yi+2:n ∀ i = 1, . . . , n− 2

It follows directly that if fY is monotone decreasing, the expected spacings of mean order

statistics (ηi:k − ηi+1:k) , i = 1, . . . , k − 1 are decreasing in i. Setting ai := − (ηi:k − ηi+1:k),

by Theorem 7 (ii) we obtain (Wf − Tw)(S2) ≥ (Wf − Tw)(S1), for S2%∗ S1. It follows that

aggregate welfare is increasing in workers’ information level.

Lemma 6. For linear information technologies, under Assumption 2, for all α ∈ (0, 1), Hα

and hα are continuously differentiable in the precision level α. Moreover, O, Tw, Tf , Ww, Wf

are continuously differentiable in α ∈ (0, 1).

Proof. For α 6= 0, set φ(α,w) := w−(1−α)E(X)
α

. Then, for linear information technologies

and α 6= 0, Hα(w) = G (φ(α,w)), and hα(w) = 1
α
g(φ(α,w)), for α = 0, H = G. By

Assumption 2 and since φ(w, α) is continuously differentiable in α ∈ (0, 1), Hα(w) and hα(w)

are continuously differentiable in α. Moreover, if Hα and hα are continuously differentiable

in α then so are the distributions of order statistics Hα
i:n. The densities hαi:n are continuous

in α for all i = 1, . . . , n. This implies that the conditional mean order statistics E
[
X̂α
i:n

]
are continuously differentiable in α. It follows that W , Ww, Tf , Tw, O are continuously

differentiable in α.

Proof of Theorem 5. The marginal value of information for workers is ∂Ww

∂α
and the socially

marginal value is ∂W
∂α

= ∂Ww

∂α
+

∂Wf

∂α
. By Theorem 3, if FY is DHR or if n ≥ n̂ > k then

∂Wf

∂α
> 0 and it follows that, at any information level α ∈ (0, 1), ∂W

∂α
> ∂Ww

∂α
. However, if

FY is IHR and n ≤ k, then social marginal gains from higher precision are lower than the

marginal gains for workers, ∂W
∂α

< ∂Ww

∂α
.

In the precision and matching game with costly precision, the optimization problem for

workers is:

max
α∈[0,1]

{Uc(α) = Ww(Sα)− n · c(α)}

and for the social planner:

max
α∈[0,1]

{USP (α) = W (Sα)− n · c(α)}

Given our assumptions on the cost function and Assumption 2, Uc and USP are continuously

differentiable in α. By the extreme value theorem this guarantees the existence of a solution

to the optimization problem of workers, respectively the social planner. The single-crossing

conditions, (SC) and (SCC), establish uniqueness.
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If Uc is increasing on [0, 1], then the optimal level of precision for workers is αwo = 1,

otherwise it is characterized by:

∂Ww

∂α

∣∣∣∣
α=αwo

= n
∂c

∂α

∣∣∣∣
α=αwo

(I)

Analogous reasoning shows that the unique socially optimal level of precision is either

αso ∈ {0, 1} or an interior solution exists which is characterized by:

∂W

∂α

∣∣∣∣
α=αso

= n · ∂c
∂α

∣∣∣∣
α=αso

(II)

Suppose that FY is DHR or that n ≥ n̂ > k. In this case, at any information level α̃, the

marginal gains for workers from higher precision are lower than the social marginal gains,
∂Ww

∂α

∣∣
α=α̃

< ∂W
∂α

∣∣
α=α̃

. Given uniqueness of the worker-optimal and the socially optimal level

of precision we obtain αwo ≤ αso.

The result for FY being IHR and n < k follows by analogous reasoning.

Proof of Proposition 2. This result is a direct corollary of Theorem 7.6 in Chapter 4, Barlow

and Proschan (1981).

C Discussion and relation to other informativeness criteria

Given our assumption that signals are monotone the natural informativeness criterion to use

is the concept of effectiveness introduced by Lehmann (1988).41 The basic idea behind this

concept is that for a given state space X, information technology S2 is more informative

about X than S1, if the conditional distribution of S2 is more dependent on X than that of

S1. Formally,

Definition 3 (Effectiveness, Lehmann (1988)). Given X, let S1 and S2 be two signals which

satisfy the Assumption 1. Then S2 is said to be more effective than S1 if for all s

G−1S2
(GS1(s|x)|x) is nondecreasing in x.

Mizuno (2006) shows that for a more effective signal about X the resulting distribution

of conditional expectations is more dispersed.

41Persico (2000) refers to this concept as accuracy. Effectiveness applies to monotone decision problems
and requires less restrictive conditions than sufficiency (Blackwell, 1951) to compare signals in terms of their
informativeness.
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Theorem 8 (Mizuno 2006). If signals are monotone, then if S2 is more effective than S1,

it follows that S2 is more integral precise than S1 for all priors.

Our definition of precision is similar to the notion of integral and supermodular precision

in Ganuza and Penalva (2010) but the stochastic orders used to define these concepts differ.

Our precision criterion in Definition 1 is based on the star order whereas integral precision

is based on the convex order and supermodular precision is based on the dispersive order.42

We briefly discuss the relation of these criteria which amounts to analyzing the relation of

the stochastic orders.43

Let X and Y be two random variables with interval support and distribution functions

F and G, respectively. We write X ≤∗ Y for X being smaller than Y in the star order, and

X ≤cx Y and X ≤disp Y for X and Y ordered in terms of the convex, respectively dispersive

order.

For a random variable X and signals S1 and S2, by the law of iterated expectations

E [E [X|S1]] = E [E [X|S1]] = µ. Consequently, in our informational setting we always com-

pare random variables with finite and equal means. In this case the convex order is equivalent

to the concept of second order stochastic dominance. Moreover, the dispersive order and the

star order are both stronger than the convex order, that is

X ≤disp Y ⇒ X ≤cx Y and

X ≤∗ Y ⇒ X ≤cx Y.

For the star order and the dispersive order the following relation holds:

X ≤∗ Y ⇔ logX ≤disp log Y. (5)

Thus, the star order and the dispersive order are in general not nested. However, under some

conditions they are.

Lemma 7. For nonnegative random variables, X and Y with distribution functions F and

G, respectively,

(i) if X ≤FOSD Y , then X ≤∗ Y implies X ≤disp Y .

42For a formal definition of these concepts, see Shaked and Shanthikumar (2007) or Ganuza and Penalva
(2010).

43For further insights on the relation to other informativeness criteria, like sufficiency (Blackwell, 1951)
or accuracy, respectively effectiveness (Lehmann, 1988; Persico, 2000) we refer the reader to the discussion
in Ganuza and Penalva (2010).
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(ii) if F and G are absolutely continuous with F (0) = G(0) = 0 and f(0) ≥ g(0) > 0, then

X ≤∗ Y implies X ≤disp Y .

Figure 4 summarizes the relation of the three precision criteria and the sets of signals

that are ordered in terms of any of these criteria.

Signals ordered in
terms of single-
crossing precision

Signals ordered in
terms of super-
modular precision

Signals ordered in terms of
integral precision

Truth-or-Noise Technologies
(Example 1)

Normal Experiments
(Example 2)

Figure 4: Illustration of the relation between the concepts of single-crossing precision, supermodular precision
and integral precision.
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